

Bo

reinf
netw
In th
netw
Sigm
is ut
using
that
Gaus
Sigm

1 I

Re

learn
deve
mach
actio
from
appro

By
neura
moto
learn
state
neura

Ho
comb
Sigm
insta
and S
be av
on th
k-nea
[3][4
non-l
and
effec
repre
they
infor
adap
Reinforcement Leaning Using a Gauss-Sigmoid Neural Network
Shin’ichi Maehara, Masanori Sugisaka, and Katsunari Shibata

Department of Electrical and Electronic Engineering, Oita University
700Dannoharu, Oita 870-1192, Japan. Email: maehara@cc.oita-u.ac.jp

Abstract

yan et al. has pointed out that the combination of
orcement learning and Sigmoid-based neural
ork sometimes leads to instability of the learning.
is paper, it is proposed that a Gauss-Sigmoid neural
ork, in which continuous input signals are put into a
oid-based neural network through a RBF network,
ilized for reinforcement learning. It is confirmed
 simulation of the same task as in Boyan et al.[1]
the learning is faster and more stable when the
s-Sigmoid neural network is used, than when the
oid-based neural network is used.

ntroduction

cently, the autonomous ability of reinforcement
ing has attracted public's attention for the
lopment of autonomous robots and learning
ines. Reinforcement learning is generally used for
n planning, and the machine learns the mapping
 each state in the designed state space to an
priate action.
 the combination of reinforcement learning and
l networks, a series of processes from sensors to
rs including recognitions, can be synthetically
ed[2]. Also, it is possible to acquire a continuous
space through learning in the hidden layers of the
l network, which can be utilized in another task.
wever, Boyan et al. has pointed out that the
ination of reinforcement learning and
oid-based neural network sometimes leads to
bility of the learning[1]. On the other hand, Gordon
utton showed that the instability of learning could
oided by employing approximation methods based
e localization of input signals, such as CMAC,
rest-neighbor, and RBF (Radial Basis Function)
][5]. If a task needs approximation of a strong
inear function, then localizing continuous signals
using a representation like a table-look-up is
tive. However, the output of such functions is
sented as a linear sum of the localized signal, and
don't have hidden layers to represent global

mation, by integrating the localized signals
tively. For example, when robots learn more than

one task, the knowledge, which could be obtained from
the previous sets of learning, is not utilized in present
learning. Gaussian soft-max network[6] also utilizes
RBF (Gaussian) units, and its generalization ability is an
improvement on the regular RBF network. However,
performance is not improved in areas where the RBF
units are densely assigned.

In this paper, we use the neural network called the
Gauss-Sigmoid neural network[7] and verify the
stability in reinforcement learning for the hill-car task
that Boyan et al. employed[1].

2 Hill-car problem

In this section, the hill-car problem is introduced as a

problem in which the approximation of strong
non-linear function is required. In this task, a car is
located somewhere on the slope as shown in Fig.1, and
must go up the right slope.

The equation of the slope is described as

+=

+=
251/

)1(

xxy

xxy

.0
0

≥
<

xif
xif

 (1)

The equation of the car’s motion can be described as

′==

′+
′+

′
−=

, ,

,1/}
1

 { 2

2

y
dx
dy

v
dt
dx

y
y

y
m

action
dt
dv

g
 (2)

Fig.1 hill car problem.
x=-1.0 x=-0.5 x=1.0

gravity

action
y goal

mailto:maehara@cc.oita-u.ac.jp

where x, y: position of the car, m: mass of the car,
action: driving force of the car g: gravity. In this
problem, since the maximum driving force of the car is
not so strong, the acceleration in the climbing direction
around the steepest area of the slope is always negative,
Therefore, when the car starts from (x, v)=(-0.5,0.0), the
car cannot climb the right slope at one go even if it tries
to climb with the maximum driving force. When the car
is located on the right side of the boundary whether the
car can climb the right slope at one go or not, the
direction of the driving force should be right. When it is
located on the left side of the boundary, the direction of
driving force should be left because the car has to go up
the left slope and then returns to the right slope with
higher velocity. Thus, at this boundary, both the ideal
value function and action function become
discontinuous, and the approximation of these functions
needs strong non-linearity.

3 Gauss-Sigmoid neural network

Sigmoid-based neural network (NN) have global

generalization ability, since the output function of each
unit is sigmoid function, but it is not suited for
approximation of strong non-linear functions such as a
step function. The output of RBF network is represented
as a linear sum of the localized signal, however they
don't have hidden layers to represent the global
information by integrating the localized signals
adaptively. Therefore, in this paper, we employ the
Gauss-Sigmoid NN in which the output of RBF is used
as the input of the hidden layer of sigmoid NN as shown
in Fig.2.

Sigmoid NN itself is weak in the approximation of
strong non-linear functions, but it becomes easy to
approximate a strong non-linearity by using localized
signals as inputs. Moreover, it is possible to obtain the
global representation, through learning, by integrating
the localized signals.
 The output of RBF network is written as

∑
=

+=
D

d
ii xgwoutput

1

 where,)(θ (3)

))(
2
1exp()(2∑ −

−=
D

d

d
i

x
xg

σ
µ

 (4)

where (Dii ,1, ,...µµ) : the center of the i-th RBF unit,
(Dii ,1, ,...σσ) : the size of the i-th RBF unit, θ: bias, n:
the number of RBF units, D : the number of the input
patterns. Both parameters of each RBF unit are also
trained by the back-propagation learning method (BP),
in the same way as the weights. However, when the
sizeσ , is too small, the shape becomes steep and the
updated value becomes too large. Then σ is converted
to a logarithmic scale, and the update value is multiplied
by the sizeσ . The update equation of the center µ is
written as

,)(
,

,
, j

dj

djd
jdj

x
xg δ

σ
µ

µ
−

=∆ (5)

where jδ : propagation error. In the training of sizeσ ,
s is defined as

),exp(,, djdj s=σ (6)
and is updated as

.
)(

)(2
,

2
,

, j
dj

djd
jdj

x
xgs δ

σ

µ−
=∆ (7)

Then s is transformed into the sizeσ by Eq.(6).

4. Actor-critic architecture

Q-learning and Actor-critic architecture are known as
popular reinforcement learning algorithms. Here,
Actor-critic architecture is employed as the paper of
Boyan et al.. Actor-critic architecture is composed of an
actor (action generation part) and a critic (state
evaluation part). The critic evaluates the present state
based on the past experiences of the system, and actor
learns the action signal. In the critic, the previous state
value is updated by using the present value to decrease
TD (Temporal difference) error

),()(ˆ 1−−+= ttt xPxPrr γ (8)
where γ : a discount factor, r: reward, xt : input, P(xt) :
value. The update equation of the state value is written
as

,ˆ)(1 tpt rxP α=∆ − (9)

where pα : a learning rate of the value.
On the other hand, in the actor,)(ta is the output and
the actual action signal)(~ ta is chosen from a
stochastic distribution whose center is)(ta . Then, the
action is updated to obtain more gain of the state value.
 ,ˆ))(~()(111 tttat rxaaxa −−− −=∆ α (10)

where aα : a learning rate of the action. In this

Fig.2 Gauss-sigmoid Neural Network.

input

output

sigmoid
function

RBF

simulation, only one Gauss-Sigmoid NN is used for
both the actor and critic. The network has two output
units, one is for the action, and the other is for the value.
If the action is not a scalar, the number of action outputs
equals the number of elements of the action vector.

5. Simulation

The hill-car problem is solved by actor-critic type

reinforcement learning. Learning ability is compared in
three cases; (1) Sigmoid-based NN, (2) Gauss-Sigmoid
NN, and (3) RBF network. The initial state of the car is
chosen from random numbers within the limits of
–1<x<1 and -4<v<4. The actual driving force is the
sum of the action, and the small uniform random
number powered by 3. The state transition is calculated
by solving the Eq. (2) by the Runge-Kutta method.
When a car arrives at the top of the hill, the reward
r =1.0, otherwise r =0.0. In the critic, the state value
is updated by Eq. (9), but when the car rushes out to the
left side of the slope or arrives at the top of the
hill,)(txp in Eq. (8) is 0. The velocity of the car was
fixed at -4.0 when it became smaller than -4.0, and 4.0
when it became larger than 4.0. Since the driving force,
action, was limited from -3.0 to 3.0, the car must go
through the state of x ≤ -0.74 with v=0.0 on the left side
to arrive at the top. The value range of the sigmoid
function is from -0.5 to 0.5. The Gauss-Sigmoid NN and
Sigmoid-based NN used both a single hidden layer, and
40 neurons. The number of Gaussian units in the RBF
network and Gauss-Sigmoid NN is 110(11×10). The
learning of center and size of the Gaussian units aren’t
performed in this simulation. The learning rate for each
network is 100/sqrt (the input number of each unit) in
Gauss-Sigmoid NN, 80/sqrt (the input number of each
unit) in Sigmoid-based NN, 0.48 in RBF network, and a
momentum term was not used. The learning was iterated
for 300,000 steps.

The value functions and the loci of the car in the
hill-car task are shown as Fig.3. The initial state of the
locus is (x, v)=(-0.5,0.0) which is the bottom of the slope.
In all cases, the value is large in the upper right part
where x and v are large. The value surface has a cliff
around the boundary, whether a car can climb right
slope at one go or not. The ridge of value function can
be observed clearly around (x, v)=(-0.85,0.0), and the
car can climb top of the hill after it goes up the left slope
in the case of Gauss-Sigmoid NN and RBF network.
While in the case of Sigmoid-based NN, the ridge of
value function cannot be observed clearly, and the car
cannot climb the slope unless it goes back and forth
many times

Fig.4 shows that driving force as a function of the
car’s states. In the case of Gauss-Sigmoid NN, the
boundary where the direction of the driving force
changes can be clearly. It can be known that the
direction of the driving force is left when the car is the
lower part of the left slope with a small negative

velocity and when the car is on the lower part of the
right slope with a small velocity. While, in the case of
Sigmoid-based NN, there are no clear regions where the
direction of the driving force is left.

The learning curve in hill-car task is shown in Fig.5.
The average number of steps to the goal over 37 initial
states is plotted every 2000 steps. The 37 initial states
are located on the grid at intervals of (Δx,Δv)=(0.25,

4.0

0.0

-4.0
-1.0 0.5 -0.5 0.0

v

a) Gauss-Sigmoid NN
(11×10 Gaussian)
(40 sigmoid units)

c) RBF network (11×10 Gaussian)

x
1.0

Fig.3 Value function and locus of the car in hill-car
task. The initial state of the locus is (x, v)=(-0.5,
0.0) that is the bottom of the slope.

4.0

0.0

-4.0
-1.0 0.5 -0.5 0.0

v

1.0

b) Sigmoid-based NN
(40 neurons)

4.0

0.0

-4.0
-1.0 0.5 -0.5 0.0

v
x

1.0

x

Fig.4 The magnitude and direction of the driving force.

-3 -2 -1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a) Gauss-Sigmoid NN
(11×10 Gaussian)
(40 sigmoid units)

b) Sigmoid-based NN
(40 neurons)

4.0

0.0

-4.0
-1.0 0.5 -0.5 0.0

v

4.0

0.0

-4.0
-1.0 0.5 -0.5 0.0

v

x x
1.0 1.0

40

0

20

60

0

1.33)
climb
show
Gaus
even
did n
Sigm
of the

Ne
traine
expe
same
RBF
RBF
Gaus
Gaus
signa
figur
wher
beco
not tr
3 sim
while
param

6. C

Th
netw
and g
show
RBF
perfo
Furth
param
fewe

σx

Fig.5

80

av
er

ag
e

st
ep

s

x

0.0

-4.0
-1.0 0.5 -0.5 0.0 1.0

1 105 2 105 3 105

. The other 11 states, from which the car cannot
 the slope physically, are excluded. In Fig.4 it is
n that the learning speed and error of
s-Sigmoid NN is almost equal to RBF network,
 though the sigmoid function is utilized. The error
ot decrease as well in the Sigmoid NN. In the
oid NN, the error did not change when the number
 hidden neurons was increased to 100.
xt, the center µ and sizeσ of each RBF unit is
d in the Gauss–Sigmoid NN. By this process, it is

cted that efficient learning is performed and the
 learning performance can be realized with fewer
 units. Fig.6 shows the center and size of each of
 unit, after learning, in the case of the
s-Sigmoid NN. The number of RBF units in this
s-Sigmoid NN is 64(8×8). The range of input
ls is shown by a gray-framed rectangle in each
e. It is clear that many RBF units move to the place
e strong non-linearity is required, and their sizes
me small. When the parameters of RBF units were
ained, it could not reach the top at one go in all the
ulations in which the initial weights are varied,
 it could reach in all the 3 simulations when the
eters were trained.

onclusion

e paper proposed use of the Gauss-Sigmoid neural
ork, when the input signals represent continuous
lobal spatial information. In the hill-car task, it was
n that the performance was almost the same as
 network and better than the as that of an
rmance of a Sigmoid-based neural network.
ermore it was also shown that by learning the
eters of RBF units, the task could be solved with

r RBF units.

Reference
[1] Boyan, J.A. & Moore, A.W. : Generalization in

Reinforcement Learning : Safely Approximating the
Value Function, Advances in Neural Information
Processing Systems, MIT Press, 7, pp.369-376(1995)

[2] Shibata, K. , Ito, K. & Okabe, Y. : Direct-Vision-
Based Reinforcement Learning in “Going to an Target”
Task with an Obstacle and with a Variety of Target Sizes,
Proc. of Inter. Conf. on Neural Networks and Their
Applications ’98, PP.95-102(1998)

[3] Gordon, G. J. : Stable Function Approximation in
Dynamic Programming, Proc. of the 12-th ICML,
pp.261-268 (1995)

[4] Sutton, R. S. : Generalization in Reinforcement
 Learning: Successful Examples Using Space Coarse

Coding, In Advanced in Neural Information Processing
System, vol8, pp.1038-1044 (1996)

[5] Sutton, R.S. and Barto, A.G. : Reinforcement Learn-
ing, The MIT Press(1998)

[6] Morimoto, J. , Doya, K. : Learning Dynamic Motor
Sequence in High-Dimensional State Space by
Reinforcement Learning –Learning to Stand up-, Proc.
IEICE, J82-D- Ⅱ ,No.11, pp. 2118-2131(1999) (in
Japanese)

[7] Shibata, K. and Ito, K. : Gauss-Sigmoid Neural network,
Proc. of IJCNN’99, #747(1999)

c) Value function and locus of the car in case
of moved RBF unit (8×8 Gaussian)

b) The trained center and
size of RBF units

a) initial state

4.0

v

µ

σv

4.0

v

0.0

-4.0
0.0
x

-1.0 1.0

4.0

0.0

-4.0

x
0.0 -1.0 1.0

v

Fig.6 The change of center and size of RBF units, and
Value function and locus of the car when the
parameters of each RBF unit was trained in the
Gauss-Sigmoid NN.

 Comparison of the learning curve in the hill-car task.

iteration

Sigmoid

RBF Gauss-Sigmoid

