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Abstract 

yan et al. has pointed out that the combination of 
orcement learning and Sigmoid-based neural 
ork sometimes leads to instability of the learning. 
is paper, it is proposed that a Gauss-Sigmoid neural 
ork, in which continuous input signals are put into a 
oid-based neural network through a RBF network, 
ilized for reinforcement learning. It is confirmed 
 simulation of the same task as in Boyan et al.[1] 
the learning is faster and more stable when the 
s-Sigmoid neural network is used, than when the 
oid-based neural network is used.  

ntroduction 

cently, the autonomous ability of reinforcement 
ing has attracted public's attention for the 
lopment of autonomous robots and learning 
ines. Reinforcement learning is generally used for 
n planning, and the machine learns the mapping 
 each state in the designed state space to an 
priate action.  
 the combination of reinforcement learning and 
l networks, a series of processes from sensors to 
rs including recognitions, can be synthetically 
ed[2]. Also, it is possible to acquire a continuous 
space through learning in the hidden layers of the 
l network, which can be utilized in another task.    
wever, Boyan et al. has pointed out that the 
ination of reinforcement learning and 
oid-based neural network sometimes leads to 
bility of the learning[1]. On the other hand, Gordon 
utton showed that the instability of learning could 
oided by employing approximation methods based 
e localization of input signals, such as CMAC, 
rest-neighbor, and RBF (Radial Basis Function) 
][5]. If a task needs approximation of a strong 
inear function, then localizing continuous signals 
using a representation like a table-look-up is 
tive. However, the output of such functions is 
sented as a linear sum of the localized signal, and 
don't have hidden layers to represent global 

mation, by integrating the localized signals 
tively. For example, when robots learn more than 

one task, the knowledge, which could be obtained from 
the previous sets of learning, is not utilized in present 
learning. Gaussian soft-max network[6] also utilizes 
RBF (Gaussian) units, and its generalization ability is an 
improvement on the regular RBF network. However, 
performance is not improved in areas where the RBF 
units are densely assigned.  

In this paper, we use the neural network called the 
Gauss-Sigmoid neural network[7] and verify the 
stability in reinforcement learning for the hill-car task 
that Boyan et al. employed[1]. 
 
2 Hill-car problem 

 
In this section, the hill-car problem is introduced as a 

problem in which the approximation of strong 
non-linear function is required. In this task, a car is 
located somewhere on the slope as shown in Fig.1, and 
must go up the right slope.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equation of the slope is described as 
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The equation of the car’s motion can be described as 
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Fig.1 hill car problem. 
x=-1.0  x=-0.5               x=1.0 
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where x, y: position of the car, m: mass of the car, 
action: driving force of the car g: gravity. In this 
problem, since the maximum driving force of the car is 
not so strong, the acceleration in the climbing direction 
around the steepest area of the slope is always negative, 
Therefore, when the car starts from (x, v)=(-0.5,0.0), the 
car cannot climb the right slope at one go even if it tries 
to climb with the maximum driving force. When the car 
is located on the right side of the boundary whether the 
car can climb the right slope at one go or not, the 
direction of the driving force should be right. When it is 
located on the left side of the boundary, the direction of 
driving force should be left because the car has to go up 
the left slope and then returns to the right slope with 
higher velocity. Thus, at this boundary, both the ideal 
value function and action function become 
discontinuous, and the approximation of these functions 
needs strong non-linearity. 

 
3 Gauss-Sigmoid neural network 

 
Sigmoid-based neural network (NN) have global 

generalization ability, since the output function of each 
unit is sigmoid function, but it is not suited for 
approximation of strong non-linear functions such as a 
step function. The output of RBF network is represented 
as a linear sum of the localized signal, however they 
don't have hidden layers to represent the global 
information by integrating the localized signals 
adaptively. Therefore, in this paper, we employ the 
Gauss-Sigmoid NN in which the output of RBF is used 
as the input of the hidden layer of sigmoid NN as shown 
in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sigmoid NN itself is weak in the approximation of 
strong non-linear functions, but it becomes easy to 
approximate a strong non-linearity by using localized 
signals as inputs. Moreover, it is possible to obtain the 
global representation, through learning, by integrating 
the localized signals. 
 The output of RBF network is written as 
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where ( Dii ,1, ,...µµ ) : the center of the i-th RBF unit, 
( Dii ,1, ,...σσ ) : the size of the i-th RBF unit, θ: bias, n: 
the number of RBF units, D : the number of the input 
patterns. Both parameters of each RBF unit are also 
trained by the back-propagation learning method (BP), 
in the same way as the weights. However, when the 
sizeσ , is too small, the shape becomes steep and the 
updated value becomes too large. Then σ  is converted 
to a logarithmic scale, and the update value is multiplied 
by the sizeσ .  The update equation of the center µ  is 
written as 
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where jδ : propagation error. In the training of sizeσ , 
s is defined as  

),exp( ,, djdj s=σ                           (6) 
and is updated as  
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Then s is transformed into the sizeσ  by Eq.(6). 
  
4.  Actor-critic architecture 
 

Q-learning and Actor-critic architecture are known as 
popular reinforcement learning algorithms. Here, 
Actor-critic architecture is employed as the paper of 
Boyan et al.. Actor-critic architecture is composed of an 
actor (action generation part) and a critic (state 
evaluation part). The critic evaluates the present state 
based on the past experiences of the system, and actor 
learns the action signal. In the critic, the previous state 
value is updated by using the present value to decrease 
TD (Temporal difference) error 

),()(  ˆ 1−−+= ttt xPxPrr γ          (8) 
where γ : a discount factor, r: reward, xt : input, P(xt) : 
value. The update equation of the state value is written 
as 

,ˆ)( 1 tpt rxP α=∆ −                    (9) 

where pα : a learning rate of the value. 
On the other hand, in the actor, )(ta  is the output and 
the actual action signal )(~ ta  is chosen from a 
stochastic distribution whose center is )(ta . Then, the 
action is updated to obtain more gain of the state value. 
  ,ˆ))(~()( 111 tttat rxaaxa −−− −=∆ α         (10) 

where aα : a learning rate of the action. In this 

 

Fig.2  Gauss-sigmoid Neural Network. 
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simulation, only one Gauss-Sigmoid NN is used for 
both the actor and critic. The network has two output 
units, one is for the action, and the other is for the value.  
If the action is not a scalar, the number of action outputs 
equals the number of elements of the action vector. 
 
5. Simulation 

 
The hill-car problem is solved by actor-critic type 

reinforcement learning. Learning ability is compared in 
three cases; (1) Sigmoid-based NN, (2) Gauss-Sigmoid 
NN, and (3) RBF network. The initial state of the car is 
chosen from random numbers within the limits of 
–1<x<1 and -4<v<4.  The actual driving force is the 
sum of the action, and the small uniform random 
number powered by 3. The state transition is calculated 
by solving the Eq. (2) by the Runge-Kutta method. 
When a car arrives at the top of the hill, the reward 
r =1.0, otherwise r =0.0.  In the critic, the state value 
is updated by Eq. (9), but when the car rushes out to the 
left side of the slope or arrives at the top of the 
hill, )( txp in Eq. (8) is 0. The velocity of the car was 
fixed at -4.0 when it became smaller than -4.0, and 4.0 
when it became larger than 4.0. Since the driving force, 
action, was limited from -3.0 to 3.0, the car must go 
through the state of x ≤ -0.74 with v=0.0 on the left side 
to arrive at the top. The value range of the sigmoid 
function is from -0.5 to 0.5. The Gauss-Sigmoid NN and 
Sigmoid-based NN used both a single hidden layer, and 
40 neurons.  The number of Gaussian units in the RBF 
network and Gauss-Sigmoid NN is 110(11×10). The 
learning of center and size of the Gaussian units aren’t 
performed in this simulation. The learning rate for each 
network is 100/sqrt (the input number of each unit) in 
Gauss-Sigmoid NN, 80/sqrt (the input number of each 
unit) in Sigmoid-based NN, 0.48 in RBF network, and a 
momentum term was not used. The learning was iterated 
for 300,000 steps. 

The value functions and the loci of the car in the 
hill-car task are shown as Fig.3. The initial state of the 
locus is (x, v)=(-0.5,0.0) which is the bottom of the slope. 
In all cases, the value is large in the upper right part 
where x and v are large. The value surface has a cliff 
around the boundary, whether a car can climb right 
slope at one go or not. The ridge of value function can 
be observed clearly around (x, v)=(-0.85,0.0), and the 
car can climb top of the hill after it goes up the left slope 
in the case of Gauss-Sigmoid NN and RBF network. 
While in the case of Sigmoid-based NN, the ridge of 
value function cannot be observed clearly, and the car 
cannot climb the slope unless it goes back and forth 
many times  

Fig.4 shows that driving force as a function of the 
car’s states. In the case of Gauss-Sigmoid NN, the 
boundary where the direction of the driving force 
changes can be clearly. It can be known that the 
direction of the driving force is left when the car is the 
lower part of the left slope with a small negative 

velocity and when the car is on the lower part of the 
right slope with a small velocity. While, in the case of 
Sigmoid-based NN, there are no clear regions where the 
direction of the driving force is left. 

The learning curve in hill-car task is shown in Fig.5.  
The average number of steps to the goal over 37 initial 
states is plotted every 2000 steps. The 37 initial states 
are located on the grid at intervals of (Δx,Δv)=(0.25, 
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Fig.3  Value function and locus of the car in hill-car 
task. The initial state of the locus is (x, v)=(-0.5, 
0.0) that is the bottom of the slope. 
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Fig.4  The magnitude and direction of the driving force. 
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. The other 11 states, from which the car cannot 
 the slope physically, are excluded. In Fig.4 it is 
n that the learning speed and error of 
s-Sigmoid NN is almost equal to RBF network, 
 though the sigmoid function is utilized. The error 
ot decrease as well in the Sigmoid NN. In the 
oid NN, the error did not change when the number 
 hidden neurons was increased to 100. 
xt, the center µ and sizeσ  of each RBF unit is 
d in the Gauss–Sigmoid NN. By this process, it is 

cted that efficient learning is performed and the 
 learning performance can be realized with fewer 
 units. Fig.6 shows the center and size of each of 
 unit, after learning, in the case of the 
s-Sigmoid NN. The number of RBF units in this 
s-Sigmoid NN is 64(8×8). The range of input 
ls is shown by a gray-framed rectangle in each 
e. It is clear that many RBF units move to the place 
e strong non-linearity is required, and their sizes 
me small. When the parameters of RBF units were 
ained, it could not reach the top at one go in all the 
ulations in which the initial weights are varied, 
 it could reach in all the 3 simulations when the 
eters were trained. 

onclusion 

e paper proposed use of the Gauss-Sigmoid neural 
ork, when the input signals represent continuous 
lobal spatial information. In the hill-car task, it was 
n that the performance was almost the same as 
 network and better than the as that of an 
rmance of a Sigmoid-based neural network. 
ermore it was also shown that by learning the 
eters of RBF units, the task could be solved with 

r RBF units.  
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c) Value function and locus of the car in case 
of moved RBF unit (8×8 Gaussian) 
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Fig.6 The change of center and size of RBF units, and 
Value function and locus of the car when the 
parameters of each RBF unit was trained in the 
Gauss-Sigmoid NN. 

 Comparison of the learning curve in the hill-car task.
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