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Abstract

A context-based attention task is employed in this
paper. An Elman-type recurrent neural network is uti-
lized to extract and keep the context information, and
only the reinforcement signal that indicates whether
the answer is correct or not is given. Through this
learning, the function of an associative memory is ob-
served in the Elman-type neural network. Adaptive
formation of the basins are examined by varying the
learning conditions.

Keywords: attention, associative memory, rein-
forcement learning, recurrent neural network, adaptive
basin formation

1 Introduction

Selective Attention is one of the important research
items for robots in the real world. There are huge
pieces of information, and necessary part of them
should be extracted. Some context information is of-
ten utilized to suggest which part is necessary. Fur-
ther, the context information itself should be extracted

from the past series of information and be kept until
the time when the context information is utilized.

Zipser showed that associative memory, in other
words, �xed-point convergence dynamics can be ob-
tained through learning in an Elman-type recurrent
network with one hidden unit[2]. The hidden unit be-
comes equal to one input signal when the other signal
is activated, and otherwise the hidden unit keep its
value like a ipop.

The authors showed that when there are more than
one input signals and more than one hidden units, the
recurrent network forms some basins, and each of the
basins corresponds to one of the categories required
in the task[3]. The coding of the category is decided
through the learning, while in the conventional asso-
ciative memory, the coding has been decided by the
designer.

In this paper, the network dynamics obtained
through learning is observed in detail. Furthermore,
the result is reported to examine how exible the
basins are formed.

2 Context-Based Attention Task

Fig. 1 shows the attention task and system em-
ployed in this paper. One arrow pattern whose di-
rection is one of four corners is presented at �rst as
the left half of Fig. 1. After some while, another
pattern, which consists of 4 small sub-patterns, is p-
resented on the same visual sensor as the right half of
Fig. 1. Then, the system is required to classify the
sub-pattern at the corner where the �rst presented ar-
row pattern pointed. The sub-pattern can be classi�ed
into one of three categories.

The arrow direction presented at �rst can be \upper
right", "upper left", \lower right" or \lower left". The
size of the original arrow image is 7 � 7 = 49. As a
noise, one pixel value is inverted randomly with the
ratio of one-half. The visual sensor consists of 5 �
5 = 25 visual cells, and one part of the original arrow
image is cropped. So totally 3 � 3 = 9 patterns can
be presented for each arrow direction if the noise is
not added. Considering the noise, 9 � (25 + 1) = 234
patterns can be presented for each arrow direction.
5 � 5 image is put into Elman-type recurrent neural
network. The input signal is -1.0 for the white pixel,
and 1.0 for the black one. The time is set as t = 0.

At a randomly selected time from 5 to 14, which
is denoted by T , a pattern that consists of 4 small
sub-patterns is presented on the same visual sensor.
The size of the sub-pattern is 3 � 3, and it can be
\square", \cross", or \plus". Since the sensor size is
5�5, the sub-patterns are overlapped with each other
at the middle row and column. In such areas, the
sensor signal is the average value of the overlapped
pixels.

There are three output units, each of which is cor-
responding to each sub-pattern. The answer of the
system is decided according to the probability that is
proportional to the sum of the output and 0.5. The

output function of each unit in the network is sigmoid
function whose value range is -0.5 to 0.5 except for the
input layer. When the answer is correct, the system
obtains a reward 1.0, otherwise it obtains a penalty
-1.0 as a reinforcement signal r. The output corre-
sponding to the answer is trained to be 0:4 � r. The
other outputs are trained to be -0.4 when the answer
is correct, and otherwise they are not trained. This
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Figure 1: The ow of the context-based Attention task employed in this paper.

means that the system cannot know the correct an-
swer directly when the answer is not correct.

At every time step except t = 0 or t = T , all the
input signals are 0.0. The number of the hidden u-
nits is 20, and the values of the hidden units are 0.0
at t = 0. The initial weight values are 0.0 for the
hidden-output connections, and are decided randomly
from -1.0 to 1.0 for the input-hidden connections. As
for the feedback connection of the hidden-hidden con-
nections, the weight value is 4.0 for the self-feedback
connections, and 0.0 for the others. The reason why
the self-feedback connection weight is set to be 4.0 is
that the maximum derivative of the output function
is 0.25 around input= 0:0, and the error signal goes
backward e�ectively through time without diverging
because 0:25� 4:0 = 1:0.

When the mutually-connected NN is utilized for an
associative memory, the connection weights are always
symmetrical, because the network dynamics always
becomes �xed-point convergence when the weights are
symmetrical. Hebb learning that is often employed
for the learning of associative memory cannot real-
ize asymmetrical connections. However, here, no such
constraint is given in advance.

3 Simulation Result

Some simulation results after 1000000 trials of
learning are shown in this section. The sequence from
the presentation of the arrow pattern to the answer
and learning is de�ned as one trial. If the maximum
output supposed to be the answer, a wrong answer ap-
pears about once per 10000 trials. Depending on the
initial connection weight values in the NN, it some-
times fails to learn.

At the next, the context extraction and associative

memory function is observed. The �rst presented pat-
terns should be classi�ed into one of the 4 categories,
because only the direction of the arrow pattern is nec-
essary to give an attention to the second presented
pattern. As mentioned above, totally 234 patterns can
be taken as one category. Here, the distance between
two patterns in a layer is de�ned as the sum of the
absolute value of the di�erence of each unit.

Fig. 2 shows the change of the standard deviation
of each category �i and the distance between the cen-
ters of two categories dij . These values are shown for
the input pattern at t = 0, and the hidden pattern at
t = 0 and t = T � 1 after being normalized by the
standard deviation of all the patterns � to observe the
relative relation. For simplicity, the data from the last
1000 trials were utilized on behalf of observing over
all the possible input patterns. The distance between
the category i and j, dij becomes larger at the hid-
den layer than at the input layer at t = 0 for any
combinations of the categories. It becomes larger al-
so through time. While, the standard deviation �i in
one category becomes almost 0.0 at t = T � 1 for any
categories, and as a result, it is far smaller than the
minimum distance between categories mini;jdij . This
means that the dynamics of the recurrent network is
almost �xed-point convergence and one �xed-point is
formed for each category. In the case when the system
made a wrong answer, the interval T is 5 or 6. It is
supposed that if the remind time is more, the system
can generate the correct answer.

Fig. 3 shows the change of the average pattern for
each category. It is shown for the input pattern at t =
0, and the hidden pattern at t = 0 and t = T � 1. In
the average input pattern, one pixel value at a corner
takes 1.0 with a high probability, but since a noise is
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Figure 2: The change of the normalized distances be-
tween categories and the standard deviation of one
category through time.

added to one pixel, it is not always 1.0. In the average
hidden pattern at t = 0, no values are so close to 0.5
or -0.5. While at t = T � 1, almost all the values
are close to 0.5 or -0.5. The dynamics of �xed-point
convergence can be observed also from this �gure.

Fig. 4 shows two examples of the dynamics. In
this example, 15 pixels in total 25 pixels have a di�er-

ent value between the two input patterns even though
both were generated from the same original arrow pat-
tern. In the hidden patterns at t = 0, the values are
di�erent more than 0.5 in 15 units among total 20 u-
nits. However, as the lower part of the �gure, the both
hidden states converge to the same hidden state.

In order to know the size of the basin correspond-
ing to each category, input signals were set randomly
and hidden state at t = 100 was observed. Table 1
shows the number of hidden states whose distance is
less than 1.9 from the average hidden state of one cat-
egory. 1.9 is the maximum distance from the average
hidden state to one hidden state in the same category
at t = T � 1. It is seen that the number, in other
words, the size of the basin varies very much depend-
ing on the category. The variety depends on the initial
connection weights of the neural network.

When the number of the cropping way into 5 � 5
image is limited to only one in spite of 3 � 3 = 9
for two of the 4 categories, the basins change as the
second row of Table 1. It is seen that the size of the
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Figure 3: The change of the average pattern of input
and hidden layers.

Table 1: The size of the basin for each category in the
whole input space.

1075 3853 1160 3912 0

2039 7527 248 186 0

category

normal

0 21 3 others

no_shift (category 2,3)

3 categories 2138 2203 5627 - 32

1286 (5719) 1306 1679 10fixed time (T=10)

no_shift (all categories) 841 468 (3528) 4670 493

condition

basin became smaller for the category for which the
cropping way was limited. In the other two simulations
with di�erent initial connection weights, the di�erence
can be observed, but is not so clear. There is one case
in which the basin is larger in one category of limited
cropping way than in one category of normal way.

When the cropping way was limited to only one
for all the 4 categories, the learning was faster and
more stable, and 8 basins were formed. The dynamics
seems complicated in this case. That may be because
the basins do not cover the whole input space. The
numbers on the third row of Table 1 are counted when
t = 200 only for this condition. Some of them do not

correspond to any of the 4 categories. The reason why
the number for the category 2 is put in parenthesis is
that the �nal convergence point is di�erent from the
hidden state at t = 5::14.

When the number of the categories reduced to
three, the basins changes as the fourth row of Table 1.
It is seen that the number of large basins is three, and
the other small basin was formed. In the other two
simulations with a di�erent random number sequence,
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Figure 4: An example of the change of hidden state. The dynamics of �xed-point convergence can be observed.
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Figure 5: The change of two hidden neuron states
when presentation time of the second pattern is �xed
at t = 10.

the number of the formed basins is just three. It is
considered that the the number of the basins becomes
equal to the number of categories when the input pat-
tern used in the learning varies in some degree.

When the presenting time of the second pattern is
�xed at t = 10, the 4 main basins are formed as the
�fth row of Table 1, but for the category 1, the hid-
den state at t = 10 is di�erent from the �nal �xed

point. In this case, the values of three hidden neu-
rons changed after t = 10. Fig. 5 shows how such
neurons change its values. X-axis shows the output
of one such neurons, and y-axis the output of another
one. Each of four lines in this �gure shows the change
of hidden neurons output for each of four input pat-
terns in the category 1. It is seen that all the hidden
states are the same at t = 10, and the speed of hid-

den state change becomes slow. However, after that,
the state changes gradually, and �nally converges to
the real �xed-point. In the simulation with di�erent
initial connection weights, four categories can be dis-
tinguished with each other as well, but only 3 basins
are formed. This means that the hidden state at t = 10
for one category changes and �nally converges to the
�xed-point for another category.

4 Conclusion

The dynamics after the learning of a context-based
attention task using Elman-type recurrent network has
been observed. When the input patterns cover the

input space in some degree, the number of the basins
becomes equal to the number of categories required in
the task, even though the size of the basin is varied
so much. The dynamics was rational and adaptive
according to the learning conditions.
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