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Abstract
In this paper, autonomous learning of reward distri-

bution in multi-agent reinforcement learning was ap-
plied to the 4 player game named “not100”. In this
game, more shrewd tactics to cooperate with the other
agents is required for each agent than the other tasks
that the learning was applied previously. The reward
distribution ratio after learning was varied among sim-
ulation runs. However, the validity of the average
non-uniform reward distribution ratio was examined
in some ways. The three agents with higher win proba-
bility after learning cooperated mutually, while strong
cooperation was not observed in some cases when the
agents learned with a fixed distribution ratio.

1 Introduction

In multi-agent systems, since it is difficult to know
the policy to solve a given task in advance, au-
tonomous learning such as reinforcement learning is
useful. However, it is one of the difficult problems to
decide “reward distribution among agents” that af-
fects to generate cooperative behaviors. There are
some methods proposed already, but the reward dis-
tribution ratio is decided in advance. For example,
one agent gets the whole reward, or the reward is dis-
tributed uniformly to all the agents. There is also the
method that the agent who contributes directly to get
a reward gets a part of the reward, and the rest of it
is distributed to the other agents uniformly[1]. How-
ever, since appropriate distribution depends deeply
on a given task, enough knowledge about the task is
required to determine the distribution. Accordingly
there is much possibility that this spoils the effective-
ness of reinforcement learning, which is useful when
the knowledge about the given task is not enough.

Then the method has been proposed that the agent
learns the reward distribution ratio to the other agents
together with the learning of actions[2]. The learning
is based on the principle that by the distribution of
the reward, the other agents become to help him, and
finally he gets more reward or gets the reward earlier.
This method was applied to a simple two-agent and
three-agent competitive problems. It was shown that
(1) the state that no agents get any rewards by a con-
tinuous conflict can be avoided, (2) the distribution
ratio becomes small to the agent whose help is not
needed, and (3) not only the ratio but also the change
of the ratio affects the action learning. In the three-

agent problem, the tactics of an agent was observed
such that he disturbs the goal of another agent who
gave him less reward than the other one.

In this paper, the reward distribution learning is ap-
plied to a different type of problem, and the effective-
ness in wide area is verified. The problem has different
properties as (1) more shrewd tactics is required, (2)
some agent always can get reward in a finite time, (3)
the time to get the reward is not considered, and (4)
not only one agent can get reward. The problem is
the four-player game named “Not 100 game”. In this
game, since one player always loses the game when the
other three players cooperate mutually, shrewd tactics
is necessary. It was verified whether cooperation with
the other agents emerges, and whether the distribution
ratio obtained by the learning is valid or not.

2 Learning of Reward Distribution

The reward distribution is learned together with the
action, but the time scale is different between them.
The action is learned at each time step, while the re-
ward distribution ratio is fixed for some trials, and is
updated according to the total reward obtained dur-
ing the period when the ratio is fixed. Concretely,
distji that is the reward distribution ratio from agent
i to agent j is changed using random numbers, and is
fixed for one cycle that is defined as N trials. Since
the distribution ratio should always satisfy

A∑

j=1

distji = 1.0, (1)

the change of the ratio ∆distji is calculated as

∆distji = rndji − rnd(j+1)%A,i, (2)

where A: the number of agents and rnd: a random
number. When dist becomes larger than 1.0 or less
than 0.0, it is set to be 1.0 or 0.0 respectively. The
difference is distributed uniformly to the ratio to the
others. In order to remove the effect in the transition
period, the total reward R in the latter half of the
cycle is calculated using the reward ri of agent i as

Ri =
N∑

n=N/2+1

A∑

i=1

distjiri(n) (3)

and is evaluated. The learning is so simple that when
R is larger than the previous value, the distribution
ratio is set as the default value, and otherwise, the
distribution ratio is restored to the previous value.



Here, each agent acts sequentially, and the state
transition is deterministic. The action learning is
based on Q-learning. Since the time to get the re-
ward is not necessary to be considered in the problem
in this paper, the discount factor γ is set to be 1.0. As
an example, the learning of the agent j = 0 is shown in
the followings. The state evaluation Vj(sj(t+ 1)) just
after his action is calculated from the possibility P fin

that the game finishes before his next tern, expected
reward in that case r̄fin, and the expected maximum
Q-value maxQj at his next tern as

Vj(sj(t + 1)) = P finj(sj(t + 1))r̄finj(sj(t + 1))
+(1− P finj(sj(t + 1)))maxQj(sj(t + 1)). (4)

Each term on the right hand side is calculated as

P finj(sj(t + 1)) ← (1 − α)P finj(sj(t + 1)) + α

if the game finishes before his next tern

← (1 − α)P finj(sj(t + 1))
otherwise, (5)

r̄finj(sj(t + 1))← (1− α)r̄finj(sj(t + 1))

+α

A∑

i=0

distjiri(t + k)

if the game finishes at t+k, (6)

maxQj(sj(t + 1))← (1− α)maxQj(sj(t + 1))
+αmaxk(Qj(sj(t + A), ak) (7)

where α: a learning constant. Q value is learned using
V as

Qj(sj(t), a(t))← (1− α)Qj(sj(t), a(t))

+α
A∑

i=0

distjiri(t + 1) + Vj(sj(t + 1)) (8)

3 Not100 Game
Here, not 100 game is introduced. As shown in Fig.

1, 4 players sit at a table, each player counts within 3
numbers sequentially, and the player who counts 100
loses the game. Fig. 2 shows the rule of this game.

In this game, one player cannot win the game when
the other 3 players cooperate mutually. Accordingly,
it becomes important how to get the help of the other
players to win the game. Actually, the game is inter-
esting at the point that the human relation between
players and the character of each player can be peeped.

Fig. 3 shows two examples of the game processes.
Here, it is supposed that the player A, B, and C coop-
erate mutually. If the player D counts 97, 98 or 99, one
of the others has to count 100, and the player D can
win the game. If he counts one of the numbers from
90 to 96, since one player can count one, two or three
numbers at one time, he has to count 100 at the next
tern as shown in the upper process in Fig. 3. How-
ever, when he counts 89, he also cannot count 97, 98,

loser !
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Figure 1: Not 100 game

1. 4 players count sequentially from 0

2. Each one counts 1, 2, or 3 numbers
    at one time.
    (If the present number is 90, the next
     player can count until 91, 92, or 93.)

3. The player who counts 100 loses the
    game. 
    (If the present number is 99, the next
     player has to count 100 and becomes
     a loser automatically.)

Figure 2: The rule of “Not 100 Game”

10097 98 999695949392919089

D A B C D!

10097 98 999695949392919089

D A B C D!D A B C

Figure 3: The reason why the agent always loses the
game when the other 3 agents cooperate mutually

or 99 at the next tern as shown in the lower process in
Fig. 3, he has to count 100. At the case of Fig. 1, the
loser depends on whether the player C counts only 98
or two numbers of 98 and 99.

In this paper, to make the computation time short,
“Not 30 game” is employed on behalf of “Not 100
game”. To all the agents except for the agent who
counts 30, the reward 1.0 is given. In the previous
tasks to which the authors applied the learning, it is
clear that the reward distribution is profitable for any
of the agents, because no reward is given when the con-
flict state happens. However, in this problem, three
agents always get the reward in a finite time, and the
appropriate distribution is not clear.

4 Simulation

One cycle is defined as 400(= N) trials, and the dis-
tribution ratio is updated at every cycle. 10000 cycles
are done in one simulation. The initial distribution ra-
tio is decided randomly with the condition that each
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Figure 4: Change of each agent’s win-probability and reward self-distribution ratio

one is positive and the total is 1.0. The range of the
random number added to the distribution ratio is re-
duced from 0.1 to 0.01 linearly in log scale in 9000 cy-
cles. The first count agent is decided randomly at each
trial. The Boltzmann selection is employed for the ac-
tion selection after normalizing to make the maximum
Q value become 1.0. The temperature is also reduced
from 1.0 to 0.1 linearly in log scale in 8000 cycles.

Fig. 4(a) shows the change of the self reward dis-
tribution ratio and the win probability for each of 4
agents. In the early stage of the learning, since the
temperature was high, the win probability of every
agent was almost 0.75. The self-distribution ratio be-
came around the value from 0.8 to 0.9 soon even if
the initial ratio is decided randomly. The win proba-
bility began to fluctuate from around 5000 cycle, but
the way of change varied depending on the simulation
run. The distribution ratio of the agent whose win
probability is large is apt to be large.

For comparison, Fig. 4(b) shows the result when
the distribution ratio is fixed at 0.91 for himself and
0.03 for the others. The fluctuation of the win prob-
ability is smaller. The reason can be thought that in
the learning case, the small change of the distribution
ratio sometimes influences the win probability.

Next, the validity of the distribution ratio is ver-
ified. Table 1 shows the average ratio after learning
over 100 simulation runs. It is seen that the self-
distribution ratio of the agent whose win probability is

Table 1: The reward distribution ratio after learning.

myself

all agents

the agents with 
win_prob>0.9

next
agent

previous
agent

opposite
agent

the agent whom the reward is distributed to

0.961 0.011 0.013 0.014

0.895 0.037 0.033 0.035

large becomes large. Even though the ratio varied ac-
tually, it is also seen that depending on the simulation
run, the ratio to the next agent is slightly smaller than
the other agent. The reason can be thought that the
help of the next agent contributes the win probability
less than the other agents.

Furthermore, the ratio of one agent was fixed, and
the win probability, total reward, and the average self-
distribution ratio of the other agents were observed.
Fig. 5 shows them as a function of the fixed ratio.
Each of them is the average over 10 simulation runs.
When the fixed ratio is small, the win probability is
1.0 except for the case of 0.0. It is suddenly decreasing
as the fixed ratio becomes larger around 0.9. The total
reward is the maximum when the fixed ratio is around
0.8. The acquired self-distribution ratio after learning
as in Fig. 1 is larger than 0.8, but is not different
so much. It is interesting that the self-distribution
ratio of the other agents also becomes larger when the
fixed ratio is larger than 0.8. This is because even
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Figure 5: The win probability, total reward, and self-
distribution ratio of the other agents as a function of
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Figure 6: Effect of non-uniform reward distribution.
The alphabet with circle indicates the agent with non-
uniform reward distribution.

though the other agents makes their self-distribution
ratio large, they can win the game.

The validity of the non-uniform distribution to the
other agents as shown in Table 1 is verified. Fig. 6
(a) shows the win probability when the ratio of the
agent A is fixed as Table 1 and that of the others is
fixed such that the self-distribution is the same but
the rest is distributed uniformly to the others. The
win probability of the agent A is larger than the oth-
ers. As shown in Fig. 6(b), when only the agent D
distributed uniformly to the others, the win probabil-
ity of the agent D became smaller. From these results,
the obtained weighted ratio is supposed to be valid.

Finally, the learning was performed in 4 groups, and
the win probability was observed when the weakest

Table 2: Change of win probability by the replace of
one agent between two groups.

learning selfish 0.91
  -0.03

uniform

learning

selfish

uniform

0.91
  -0.03

0.158

0.096

0.175

0.504

0.302

0.554

0.898

0.932

0.920

0.511

0.568

0.345

0.238 0.578 0.7110.592
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agent was replaced by the strongest agent in the other
group. In one group, all the agents learned the ratio.
In other groups, the ratio of every agent was fixed.
The fixed ratio varied among three groups as in Table
2. The result are shown in Table 2. When the weak-
est agent in the learning group was replaced, the win
probability of the newcomer agent is only around 0.1,
while the win probability of the strongest agent in the
learning group is more than 0.5 in every other group.
However, the strongest agent in the selfish group or
the group of (0.91-0.03) ratio could win more often
than the strongest agent in the learning group. The
result can be interpreted that in the learning group,
an appropriate cooperation strategy is obtained by the
agents, it is hard for the other group agent to win.
However, since the cooperation strategy is not effec-
tive in the other groups, the strongest agent in the
learning group could not win very much.

5 Conclusion
The reward distribution learning was applied to

“Not 100 game”. The weighted reward distribution
was observed, and the validity was examined in some
ways. The cooperation could be observed when the
distribution ratio was learned, while it could not be
observed when the distribution ratio is fixed as to dis-
tribute the reward to the other agents uniformly.
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