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Abstract
Using symbols, our humans can communicate com-

plicated information cleverly with each other. Think-
ing about the “Symbol Grounding Problem” and the
brain structure of the living things, the authors believe
that it is the best solution for generating communica-
tion to use a neural network that is trained based on
reinforcement learning. However, it has been said that
neural networks are not good at symbol processing.
As the first step of the research of symbol emergence
using neural network, this work focused on the neces-
sity of ”elimination of noise effect”, and it was exam-
ined that analog communication signals are binarized
in some degree by adding some noise in reinforcement
learning-based communication acquisition. It was also
observed that when the noise ratio became larger, the
degree of the binarization became larger.

1 Introduction
Our humans can communicate complicated infor-

mation cleverly with each other using symbols. It has
been thought that artificial neural networks(ANNs)
are good at continuous nonlinear approximation, but
are not good at symbol handling or logical process-
ing. In our living things, the functional difference has
been pointed out between the left brain and the right
brain[1]. Especially, the Broca’s area and Wernicke’s
area that relate deeply to language are located in the
left brain[2].

Based on this common knowledge, the idea of the
specialization that the ANN corresponding to the right
brain is used for pattern processing, and a digital com-
puter corresponding to the left brain is used for logi-
cal processing has been accepted generally. However,
there is no general idea about what signals should be
transferred between the ANN and the computer, and
that causes the “symbol grounding problem”. Fur-
thermore, it seems strange that the left brain and the
right brain looks almost the same in the real brain
compared with the difference between the ANN and
the digital computer.

We think that this “symbol grounding problem” is
very serious. We believe that in order to solve the
problem, the pattern processing and the logical pro-
cessing should not be distinguished, and that is essen-
tial to realize intelligence in robots. Accordingly we
expect the ANN to do both processing without any
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Figure 1: Discretization of communication signals by
the addition of noise.

discrimination. In our brain also, a natural neural net-
work must process symbols. For this reason, it is very
significant to show that the ANN has the ability to dis-
cretize analog signals only by applying reinforcement
learning. Then, there appears a question “is it true
that symbols do not emerge from the ANN through
learning?”

Here, for simplicity, symbols are considered as dis-
cretized signals. Then, why do we discretize the com-
munication signals? Considering from necessity, either
logical thinking or eliminating noise effect can be one
of the reasons. Considering from the structure, asso-
ciative memory, in other words, fixed-point dynamics
can be a solution to realize the discretization. As the
first step of the research of symbol emergence, this
work focuses on the necessity of ”elimination of noise
effect”, and it is examined whether analog communi-
cation signals are discretized or not by adding some
noise in reinforcement learning-based communication
acquisition.

2 Learning and Task
As a simple communication environment, two

agents are assumed. Referring to [3], one of them
can transmit some communication signals to the other.
They are put on a very simple one-dimensional space
as shown in Fig. 1. When the both agents touch to-
gether, they get some reward. The transmitting agent
cannot move, but can observe the relative location of
the opponent, and generates its communication sig-
nals by its own neural network. The receiving agent
interprets the communication signals and generates its
motion command also by its own neural network. It
can move according to the motion command. It can-
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Figure 2: Architecture of each agent and signal flow.

not observe anything except for the communication
signals, and cannot transmit anything. Both agents
are trained based on reinforcement learning indepen-
dently. The transmitting agent deals with the commu-
nication signals as its actions, while the receiving agent
deals with the communication signals as its states.

The transmitting agent is fixed at the left edge on
a one-dimensional ring where the left edge is linked to
the right edge. The length of the ring is 1.0. The re-
ceiving agent is located randomly at every trial. The
distance moved is proportional to the motion com-
mand that is the sum of the output of the receiver’s
neural network and a random number as a trial and
error factor. The motion command can be negative.
When the command is positive, it goes to the right,
and when it is negative, it goes to the left. When the
distance between the transmitter and receiver is less
than some value, they can touch each other and get
a reward. However, if the motion command is large
though the receiver is close to the transmitting agent,
it goes past the transmitter, and they cannot get the
reward. Accordingly the receiver’s motion should be
in a range, and the range is gradually sifted according
to the relative receiver’s location.

Fig. 2 shows the architecture of each agent and
the signal flow. The transmitting agent observes the
relative receiver’s location, and then the information is
localized by N Gaussian units. This helps the neural
network to learn a strong nonlinear transformation.
The center of each Gaussian is arranged between 0.0
and 1.0 with a constant interval. The size of each
Gaussian σ is 1.0/(N − 1), where N is the number of
Gaussian units. The output is described as

GSi(dist) = exp

(
−1

2

(
dist − i

N − 1

)2
)

, (1)

where i is the suffix of the Gaussian unit number (i =
0, 1, 2, .., N − 1), dist is the relative receiver’s distance
from the transmitter. Here, N = 30.

Two or three of the outputs of the transmitting

agent are used to decide the communication signals.
Each signal is the sum of the corresponding output
and a random number as a trial and error factor that
is added for reinforcement learning. A noise factor is
also added to the signal.

As a reinforcement learning architecture, actor-
critic is employed for each agent. One of the outputs
of the network is used as critic, and the others are used
as actor. The hidden neurons are used in common by
both types of outputs. The training signals are com-
puted based on reinforcement learning, and the net-
work is trained based on Back Propagation. TD error
r̂ is calculated as

r̂t = rt + γPt − Pt−1 (2)

where r is the reward, Pt is the critic output, and γ is
a discount factor. The critic output is trained by the
training signal as

Ps,t−1 = Pt−1 + r̂t = rt + γPt. (3)

The actual motion vector M is calculated as

Mt = α(2.5At + rndt + nt) (4)

where A is the actor output vector, rnd is the random
number vector for the trial and error factor, and n
is the noise vector that is not added in the case of
the receiver’s motion, but is added in the case of the
communication signals. α is a constant. The actor
output is trained by the training signal as

As,t−1 = At−1 + βr̂trndt−1 (5)

where β is a constant, and it is 0.5 here.
The output function of each hidden or output neu-

ron is a sigmoid function that ranges from -0.5 to 0.5.
The upper limit for all the training signals is 0.4, and
the lower limit is -0.4 to avoid the saturation area of
the sigmoid function. In Eq. (4), by multiplying 2.5 to
each actor output, the range becomes from -1.0 to 1.0,
and after that, the trial and error factors and noises
are added. Here, the trial and error factor is cubed
uniform random number whose level, in other words,



whose amplitude is ±0.4 or ±0.6. The noise factor is
a uniform random number whose level is varied from
±0.0 to ±1.6 with the interval of 0.2 in the following
simulations. When the value becomes larger than 1.0
or less than -1.0, it is returned to 1.0 or -1.0 respec-
tively. Even in the case that the noise factor is always
zero, the random number for the trial and error factor
is received as a noise for the receiver.

For the critic computation based on TD (Temporal
Difference) learning in Eq. (2) and (3), 0.5 is added
to the output for the critic actually. The reward that
is given to the both agents is 0.9. To generate the
communication signal, α in Eq. 4 is 1.0 in the trans-
mitting agent. For the motion command, α is 0.4 or
0.43 in the receiving agent so as that the receiver can
touch the transmitter in one step from any locations
by an appropriate motion. The number of layers is 3,
and the number of neurons in the hidden layer is 10
for both agents.

Two tasks are introduced in this paper. In the first
one, the both agents can touch with each other when
the distance is less than 0.11, and α in Eq. (4) is 0.4.
If the receiver’s motion is discretized, no less than 4
levels of output is required. The number of commu-
nication signals is two. In the other task, the both
agents can touch when the distance is less than 0.08,
and α is 0.43. If the receiver’s motion is discretized,
no less than 6 levels of output is required. The number
of communication signals is three.

3 Result

In this communication learning, it was observed
whether the transmitted signals became discrete when
the noises were added to the communication signals
during the learning. The communication signals after
learning with no noise are as shown in Fig. 3(a) and
those with some noise (level=0.8) are as shown in Fig.
3(b). Fig. 3(c) shows the signals after learning with
some noises (level=0.8) in the case of the task with 3
communication signals. Fig. 4 shows the receiver’s
motion after learning with noise for each of two and
three communication signals cases. The sloping lines
in Fig. 4 indicate the maximum and minimum limit
values of the motion for the receiver to touch the trans-
mitter by the motion. After learning with noise, each
communication signal was almost binarized, and only
around the boundary of the binary values, the signal
took a medium value. However, it is clear that the
degree of binarization is larger than in the case of no
noise. The receiver’s motion is discretized into four
levels by the combination of the two binary commu-
nication signals in the range between the maximum
and the minimum values. The motion is more clearly
discretized than the communication signals. The rea-
son might be that the receiver learned to binarize the
received signal utilizing non-linear transformation of
the neural network. When the number of communica-
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Figure 3: The communication signals as a function of
the relative distance. The random number level is 0.4.

-0.4

-0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0

ve
lo

ci
ty

relative distance relative distance
(a) num_signal=2, noise_level=0.8 (b) num_signal=3, noise_level=0.8

Figure 4: The receiver’s motor command as a function
of the relative distance. The random number level is
0.4 and the noise level is 0.8.

tion signals is three, the information to generate the
motion command is allotted well among three signals.

The relation between the noise range and the dis-
cretization was also observed. The degree of binariza-
tion that means how the signal is close to 1.0 or -1.0
is defined as

bin =
Nc∑
i

Nd∑
j

|comi,j |/(Nc · Nd) (6)

where Nc is the number of communication signal, Nd
is the number of sampled relative receiver’s locations,
and com is the communication signal without the ran-
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Figure 5: The degree of binarization according to the
noise level in the learning phase.
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Figure 6: Noise tolerance according to the noise level
in the learning phase.

dom number and noise. If the communication signal
is always -1.0 or 1.0, the degree becomes the maxi-
mum value of 1.0, while if the signal is always 0.0,
it becomes the minimum value of 0.0. The degree of
binarization according to the noise range is shown in
Fig. 5(a). Each small circle shows the average over 50
simulations, and the vertical line shows the standard
deviation. It can be seen that when the noise level be-
comes larger, the degree of binarization becomes larger
and the deviation becomes smaller. However, when
the noise level becomes larger than 0.8, the degree de-
creases slightly according to the noise level.

The noise tolerance was also examined. Fig. 6
shows the average steps to the goal as a function of
the noise level in the learning phase for each noise level
in the test phase after learning. It can be seen that if
some noise is added in the test phase, the performance
is the best when the noise level in the learning phase
is 0.8. It is interesting that under the same condition,
the degree of binarization is the maximum. However,
when the noise level in the learning phase is larger
than 0.8, the performance becomes worse even if the
noise level in the test phase is 0.0. This means that
the learning itself did not progress by the large noise.

In this simulation, the random number is added to
each communication signal other than the noise, but
for the receiver, the random number also works as the
noise. In order to see the effect of the random num-
ber, Fig. 5(b) shows the degree of binarization when
the level of the random number is 0.6 on behalf of 0.4.
Comparing with Fig. 5(a), the degree is larger when
the random number level is larger, and the noise level
in the case of the maximum degree of binarization is
shifted slightly to be small. It is known that the ran-
dom number for reinforcement learning also promoting
the binarization of the signals.

Fig. 5(c) shows the degree when the number of com-
munication signals is three. It can be also seen that
the degree of binarization becomes large according to
the noise level and have the maximum value.

4 Conclusion
It was shown that unless the noise level is too large

for learning to progress, the communication signal is
binarized more, and is tolerant of noise more accord-
ing to the noise level when the communication signal
is generated using a neural network, and the network
is trained based on reinforcement learning. The au-
thors think it very significant to show that the signal
generated by a neural network is binarized only by
reinforcement learning. It is thought that by using a
recurrent network, the signal is binarized more clearly.

Acknowledgment
This research was partially supported by the Japan

Society for the Promotion of Science, Grants-in-Aid
for Scientific Research, #14350227 and #15300064.

References
[1] Sperry, R.W., “Hemisphere Deconnection and

Unity in Conscious Awareness”, American Psy-
chologist, 23, pp. 723-733, 1968.

[2] Geschwind, N., “Specialization of the Human
Brain”, In the Brain, W.H. Freeman and Com-
pany, San Francisco, 1979.

[3] Ono, N, Ohira, T. and Rahmani, A.T., “Emer-
gent Organization of Interspecies Communication
in Q-Learning Artificial Organs”, Advances in Ar-
tificial Life, pp.396–405, 1995.


