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Abstract 
Exploration is an important factor that influences the performance in reinforcement learning, and random factors are 
usually used to realize it.  However, the exploration that real lives are doing does not seem just random actions, but 
seems a kind of deterministic and intelligent actions using their knowledge and considering the context.  In this paper, 
the author tries to explain such explorations as a deterministic behavior and propounds a novel approach that effective 
exploration is acquired by reinforcement learning.  It is shown that an agent with a recurrent neural network trained 
based on reinforcement learning becomes to explore effectively to some extent in some simple problems. 
Keywords: exploration, reinforcement learning, recurrent neural network, context 

 
1. Introduction 

Reinforcement learning is an autonomous and 
purposive learning based on reward and punishment by 
trial and error.  The trial and error is usually called 
“exploration” and it is an important factor that has a 
large influence on the performance of reinforcement 
learning.  Usually, it is realized by stochastic action 
selections using random numbers, such as -greedy or 
Boltzmann selection[1].  However it is difficult to 
decide the ratio of the random factors in the action 
selection due to the “exploration-exploitation dilemma”. 

This research was triggered by the simple questions 
as “Do we take stochastic actions?” and “Is there a 
random number generator in our brain?”  For example, 
if we are put in an unknown maze, we try not to pass the 
same way as we have already passed, and try to imagine 
a two-dimensional map in our brain.  In other words, we 
explore the maze using the knowledge we have and 
considering the context.  When we are at a branch, we 
don’t move our fingers, jump, or go to the midway of 
the two paths, and choose one of the two paths.  From 
this fact, our “exploration” is not just random actions, 
but seems very intelligent actions.  When we don’t have 
any idea about which way we should go, we sometimes 
shoot a dice.  However, even in such a situation, the 
decision itself can be considered to be deterministic.  

Against the above interpretation, the following 
discussions can be accepted.  One of them is that that is 
the result of a stochastic action selection with a high 
probability for the action with a high action value after 
representing appropriate action values using knowledge 
and/or context.  Another is that the exploration is not 
done at each actuator level, but is the result of the 
stochastic action selection on higher abstracted space.  
Actually, abstraction of action space has been discussed 
as temporal abstraction[2]. 

It is certainly difficult to deny the possibility of the 
existence of stochastic action selection.  However, there 
seems no rational reason why stochastic action selection 
must be employed except for “the concern that an agent 
cannot explore all the unknown states without stochastic 
factors” or “easiness of statistical analysis”.  When our 
“exploration” mentioned above is considered, it is 
thought that exploration can be realized without 
stochastic factors.  If exploration is a result of 

deterministic decision making, it is considered as one of 
the actions in a wide meaning.  Then it is expected that 
appropriate explorations can be learned through 
experiences as well as the other functions.  The author 
has been thinking that the reinforcement learning is 
useful not only for the learning of actions but for the 
learning of a variety of functions including recognition 
and memory, and plays an important role in the 
emergence of our intelligence as living creatures[3].   

According to the above discussion, in this paper, 
based on the hypothesis that “exploration” by real lives 
is not realized by stochastic action selections, but a kind 
of deterministic ones, it is propounded that the actions 
that can be interpreted as exploration are acquired by 
reinforcement learning.  However, since the learning 
without using random number generator is another 
ongoing research subject, this paper is focused only on 
the acquisition of non-random exploration and random 
numbers are used for learning.  Since context is useful 
to realize effective “exploration” as mentioned above, a 
recurrent neural network is used[4].  Two kinds of very 
simple tasks are picked up, and the acquisition of 
exploration behavior is examined.  In one of them, the 
goal cannot be known explicitly, but effective 
exploration using knowledge and context is required. 
The other task is mainly focused on the acquisition of 
knowledge by explorations. 
 
2. Learning 

Here, Elman-type recurrent neural network whose 
hidden outputs are fed back to the input layer at the next 
time step is employed as the most general recurrent 
neural network.  The present observation signals st  are 
the input of the network.  The number of output neurons 
is the same as the number of actions, and each output is 
used as Q value for the corresponding action.  After 
forward computation of the output for the previous input 
signals, the training signal Qs,at 1

for the Q value of the 
previous action Qat 1

(st 1)  is generated autonomously 
based on Sarsa algorithm[1] as 

Qs,at 1
= rt + Qat

(st )  (1) 

where r  is a given reward and  is a discount factor.  



The training signal is given only to the corresponding 
output, and the network is trained by BPTT (Back 
Propagation Through Time)[5].  The output function 
used in the hidden and output layer is the sigmoid 
function whose value ranges from -0.5 to 0.5, so the 
output of the network after adding 0.4 is used as Q value, 
and the training signal is used after subtracting 0.4 from 
the signal generated by Eq. (1). 

The learning is done independently for each episode 
(trial). Before each episode, all the hidden outputs are 
reset to 0.0, and all the Q values after reaching a goal 
are 0.0.  When the agent reaches the goal, it can get a 
reward r = 0.8, and otherwise r = 0.0 always. 
 
3. Simulation 
3.1 Exploration on branch situation 

At first, the branch situation is simulated in which 
only one of two marked states among many states is the 
real goal, but there are no information about which is 
the real one between the two marked states.  As shown 
in Fig. 1, an agent is located at the center of the 5x5 grid 
world, and two landmarks are put randomly on two 
states on the four sides of the world.  The real goal is 
chosen randomly from the two marked states, but the 
agent does not know that.  The two points that should be 
observed are whether the agent can go to one of the 
marked states by its intention and also whether the agent 
can change its moving direction after reaching the state 
and finding that it is not the real goal.  

The agent can choose one of the four actions, moving 
up, right, down, and left, and the state transition is 
deterministic.  If the agent hits against a wall, it stays at 
the same state. The agent can observe whether the state 
is marked or not for each of 9x9 grid world whose 
center is fixed at the agent location.  This enables the 
agent to catch the both landmarks wherever the agent 
exists.  The input signals to the network are 9x9=81 
binary signals.  The neural network has three layers, and 
the number of hidden neurons is 20.  The maximum 
time steps traced back through time for BPTT is 30.  
-greedy is used as stochastic action selection during 

learning.   is fixed at 0.1 and discount factor  is 0.92.  
The initial weight for each hidden-output connection is 
0.0 and that for each non-feedback input-hidden 
connection is chosen randomly from -0.5 to 0.5.  For the 
self-feedback connections, the initial weight is 4.0, 

while that for the other feedback connections is 0.0.  
The learning constant for BPTT is 0.2. 

At the early phase of the learning, even though the 
agent reached one marked state, it was difficult to go 
toward the other marked state.  Sometimes it took 
several thousands of steps to reach the real goal, but the 
number decreased as the learning progressed.  After 
learning of 100000 episodes, the agent still failed to 
reach the goal for 5 combinations of real and fake goal 
locations, but it successfully reached the real goal 251 
combinations among the total of 256 combinations.  

Successful sample behaviors for 4 combinations are 
shown in Fig. 2.  It is seen that the agent heads to one of 
the marked states at first, and then after finding the state 
is not the real goal, it changes its moving direction to 
the other marked state even though one redundant action 
is seen just after reaching the first marked state in the 
case of Fig. 2 (a) (b).  In these cases, the distance from 
the center to each marked state is the same with each 
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Fig. 2  The behaviors after learning.  ‘G’ indicates the 
landmark of goal and circled one indicates the real goal.  
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Fig.3 The change of the maximum Q value and one 

hidden neuron’s output in one trial for the case of 
Fig.2 (a) and (b).  ‘G’ indicates the landmark of 
goal and circled one indicates the real goal. 
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Fig. 1 The task in which there are two landmarks of 

goal, but no information about which is the 
real goal.  



other, but when one of the marked state was moved 
closer to the center, it visited to the closer marked place 
at first as shown in Fig. 2 (c) (d) with some exceptions. 

Fig. 3 shows the change of the maximum Q value 
and the output of one hidden neuron in one trial for the 
both cases of Fig. 2 (a) and (b).  It is seen that the 
maximum Q value increased as the agent approached to 
the marked place, but once it found the marked state 
was not the real goal, the Q value went down.  However, 
it increased again as the agent approached to the other 
marked state.  In the case of Fig. 2 (a), it passed on the 
state (2,4) twice, and the observation is completely the 
same between before and after reaching the fake goal at 
the state (4,4).  Nevertheless, the Q value on the state 
(2,4) is 0.54 for the right move and 0.45 for the left 
move before reaching the fake goal, while it changes to 
0.42 for the right move and 0.50 for the left move.  This 
means that the recurrent network extracted and kept the 
information that the first marked state was the fake goal, 
and the network reflected the information to the Q value.  
The hidden neuron in Fig. 3 (b) took the value around 
0.0 at first, but once it reached the fake goal, the value 
went down around -0.4. For the other combination of 
the marked states, the same tendency can be seen in this 
neuron.  It can be considered that the neuron is 
representing the passing of the fake goal. 

 
3.2 Exploration without information of goal location 

A mouse in a maze explores effectively without any 
information about food location.  There appears to be a 
problem whether such exploration behavior can be 
acquired by reinforcement learning.  Then this section is 
focused on the exploration without information of goal 
location, and it is examined whether actions that can be 
called as exploration can be acquired through learning. 

As shown in Fig. 4, five 2x2 mazes are prepared.  
Four of them have one wall inside, and the other has no 
walls.  One of the five is chosen randomly at every trial, 
and the agent is located randomly at one of four states.  
The agent can take one of the five actions each of which 
is move to one of the four directions or stay at the same 
state.  The state transition is deterministic and if the 
agent chooses the action to move against a wall, it stays 
at the same state.  A total of 17 observation signals can 
be divided into four kinds.  The first four signals 
indicate whether a wall exists in one of the four 
directions, and other eight signals indicate whether the 
goal exists at each of eight neighbor states.  The other 5 
signals indicate the previous action that is one of the 
five actions.  Each signal is binary signal and is put into 
the recurrent network.  At the beginning of a trial, all 
the observation signals representing previous actions are 
0.  Action selection method is -greedy and  is 0.1 at 
the beginning of learning, and is gradually decreased to 
0.0 by a constant value until the end of the learning.  
This means that the agent selects its action greedy at the 
end of the learning.  The number of layers in the 
network is four and each of which has 17 (except for the 
feedback input), 20, 10, 5 neurons respectively from the 
input layer to the output layer.  All the outputs of the 

upper hidden neurons are also the input at the next time 
step together with the 17 external input signals.  The 
network is trained by BPTT with the training signal as 
Eq. (1).  The number of time steps traced back to the 
past is 10 here.  The initial weight value is 0.0 for all the 
connections from the upper hidden layer to the output 
layer, and that for the other connections is chosen 
randomly from -1.0 to 1.0.  The discount factor  is 0.9 
and learning rate for BPTT is 0.2. 

The goal appears randomly one of the three states 
where the agent does not exist after three state 
transitions by the agent action.  For example, if the 
agent is located initially at (0, 0) and no wall is detected, 
it cannot identify whether the maze is (a), (b) or (e).  
Accordingly, unless it moves, it cannot know whether it 
should go up or right when the goal appears on the 
diagonal state (1, 1).  However, if the agent moves 
beforehand and identifies the maze, it can go to the 
correct direction even though the goal appears on the 
diagonal state.  Furthermore, if the agent exists at the 
next of the inner wall when the goal appears, it has to 
move three times to reach the goal if the goal was put 
behind the inner wall.  Accordingly, it should be on a 
state that is not next to the inner wall just before the 
appearance of the goal and should remember where is 
the inner wall.    

The average time steps from the appearance of the 
goal for 1000 trials after 100000 trials of learning is 
1.35 for the four-layer Elman network case, 1.55 for 
three-layer Elman network case, and 1.57 for four-layer 
regular network case.  The optimal number of expected 
steps is 1.33.  The behavior of the agent using four-layer 
Elman network is shown in Fig. 5.  In this figure, the 
initial agent location is (0, 0), and a thick arrow or point 
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Fig. 4  Five 2x2 mazes used in the simulation 
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Fig. 5 Acquired exploration behaviors before and after 

the goal appears. 



indicates the action before the appearance of the goal, 
and a thin line indicates the action after the goal 
appeared on the diagonal state of the agent.  In all the 
cases, the agent existed on the state that is not next to 
the inner wall after some actions before the appearance 
of the goal, and when the goal appeared on the diagonal 
state, it could go to the way that the inner wall did not 
block.  Comparing with (a) and (b), the agent went up to 
(0, 1) at first, and then returned to (0, 0) in the both 
cases, but the third action is to go right in the case of (a), 
while to go up in the case of (b) even though the 
observation signals are the same between them.  This 
means that the recurrent network memorized whether 
the inner wall existed or not on the state (0, 1), and the 
memorized information was reflected to the third action. 

Finally, in order to examine whether the state value 
increases by knowing the maze shape and it promotes 
the exploration behaviors, the maze shape is made to be 
more complicated and the sight of the goal is 
completely deprived.  Here, the shape of 3x3 maze such 
as shown in Fig. 6 is decided randomly at every trial, 
and the agent is put on the center of the maze.  The goal 
is also located randomly, but the agent cannot know the 
location.  The agent’s observation has eight signals.  
Four of them represent the wall presence in each of 4 
directions, and the other four represent the previous 
action.  The Elman network has three layers, and the 
number of hidden neurons is 30.  The initial weight 
values are the same as in the previous simulation.  The 
learning rate for BPTT is 0.01, and the number of time 
steps traced back to the past is truncated at 30 steps.   
in the -greedy is 0.1, and the discount factor  is 0.9. 

Fig. 6 shows the learning result.  Even though the 
maze shape changes randomly at every trial, the 
exploration behavior to go everywhere effectively can 
be obtained as shown in the figure with some exceptions.  
In this case, since there is certainly a goal in the maze, if 
exploration progresses and the number of non-visited 
states becomes small, the possibility to reach the goal at 
the next time step becomes large when it goes to a 
non-visited state.  Accordingly, it is expected that the 
recurrent network learns the fact, and the maximum Q 
value that is the state value increases gradually 
according to the progress of exploration.  However, the 
increase of the Q value could not be observed. 

Then the goal location was limited at one of four 
corners.  The learning of exploration behavior could not 
be obtained.  For example, in the case of Fig. 6 (a), if 
the goal is located on one random state on the four sides, 
there is a possibility to reach the goal whatever direction 
the agent goes to.  However, if the goal is located only 
on one of the four corners, there is no possibility to 
reach the goal at the next time step from the center of 
the maze.  That might be the reason that the agent could 
not learn an appropriate exploration behavior such that 
the agent goes to the left since it has been to the right 
before.  If the recurrent network memorizes the 
information about all the visited states in the maze, a 
proper state value function might be obtained.  The 
recurrent network is difficult to learn the function of a 

counter or multiple state transitions.  The problem might 
be originated from the learning ability of the recurrent 
network.  However, hereafter, more detailed analysis is 
necessary to know the cause correctly. 

 
4. Conclusion 

It is propounded that by not treating “exploration” in 
reinforcement learning as simple stochastic actions but 
treating it as a kind of intended actions, effective 
“exploration” is acquired by reinforcement learning.  
This idea was introduced in the task that the goal 
information is not clear and also in the task in which 
“exploration” is required with no information about the 
goal location, and effective “exploration” can be 
obtained to some extent by reinforcement learning. 

It is thought that this idea is deeply relating to the 
temporal and spatial “abstraction” and also to the 
“curiosity” that has a possibility to make actions emerge 
without reward.  It is desired to construct a system to 
explain these items consistently. 
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Fig. 6  Exploration behavior after learning in the case of 

no sight of the goal. 


