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Abstrac t  It was confirmed that  a real  mobi le  robo t  with a 
simple visual sensor could learn appropr ia te  motions  to 
reach a target  object  by direct-vision-based re inforcement  
learning (RL).  In direct-vision-based RL, raw visual sen- 
sory signals are put  directly into a layered  neura l  network,  
and then the neural  network is t ra ined using back  propaga-  
tion, with the training signal being genera ted  by reinforce- 
ment  learning. Because of the t ime-delay in t ransmit t ing the 
visual sensory signals, the actor  outputs  are t ra ined by the 
critic output  at two t ime-steps ahead.  It was shown that  a 
robot  with a simple monochrome visual sensor can learn to 
reach a target  object  from scratch without  any advance 
knowledge  of this task by direct-vis ion-based RL. 

Introduction 

Reinforcement  learning (RL) is an at tract ive learning 
method  in autonomous  robots,  and has been  util ized to 
obta in  an appropr ia te  mapping f rom state space to action 
space. By combining re inforcement  learning and a neural  
network,  cont inuous states and actions can be handled,  be-  
cause neural  networks are able to approximate  nonl inear  
functions with continuous input  and output  values. This 
combinat ion  has successfully been  appl ied to nonl inear  con- 
trol tasks 1'2 and games. 3 

A m o n g  many types of robot  sensor, a visual sensor con- 
tains the most  sensory cells, thereby giving considerable  
informat ion about  the envi ronment  to the robot .  Humans  
also largely rely on visual informat ion in o rder  to know the 
envi ronment  state. Previously, A s a d a  et al. 4 appl ied  rein- 
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forcement  learning to soccer robots  that  were equipped 
with a visual sensor. For  this experiment ,  processing of 
the visual sensory signals was given to the robot  be fo rehand  
to divide the state space into a number  of discrete states. 
The robot  learned  appropr ia te  actions for each state by Q- 
learning. However ,  the processing of the visual sensory sig- 
nals needs the knowledge  of the task and intell igence 
actually. 

On  the o ther  hand, in order  to realize intell igence in a 
robot ,  we think that  it is impor tan t  that  humans do not 
provide  knowledge for the given tasks to the robot ,  and the 
robot  obtains the function to achieve the task by itself. 
Based  on this idea, direct-vision-based R L  has been  pro- 
posed.  5'6 Dur ing  learning, the whole process f rom interpret-  
ing the sensory signals to moving the motors  are computed  
by a layered  neural  network.  Raw visual sensory signals are 
sent directly to a l ayered  neural  network,  which is then 
t ra ined using back propagat ion.  Then the training signal is 
au tonomously  genera ted  within the robot  using reinforce- 
ment  learning. This synthetic learning is not  only for the 
mot ion planning,  but  also for a series of processes from 
sensors to motors,  including recognit ion and other  func- 
tions. It has been  repor ted  that  when a robo t  learns the 
actions needed  to reach a target,  spatial  informat ion is 
adapt ively represen ted  on the h idden layer. 5'6 Moreover ,  it 
was found that  learning is faster and more  stable than when 
preprocessed  informat ion is used as inputs. 5'7 The  effective- 
ness of direct-vis ion-based R L  ment ioned  above  has been 
confirmed only by some simulations. 5'8 

Here ,  it is shown that  a real  mobile  robot  with a mono-  
chrome visual sensor can learn appropr ia te  mot ions  from 
scratch without  any advance knowledge in a "going to a 
target"  task. 

Actor-critic architecture 

Figure 1 depicts the concept  of direct-vis ion-based RL. 
Here ,  an actor-cr i t ic  architecture 9 has been  employed.  The 
actor, a mot ion  command  generator ,  and the critic, a state 



evaluator, are composed of one layered neural network, as 
in previous simulations. 5'6 That means that both the actor 
and the critic use the hidden layer in common. The tempo- 
ral difference (TD) method is used for critic learning. The 
TD error is defined as 

~, = ~ + y~ P,_, (1) 

where y is a discount factor, r, is a reward, and P, is the critic 
output. The critic output at the previous time P, 1 is trained 
by the training signal: 

P~,t-i = Pt-1 + ~ = rt + yP, (2) 

where Ps,,-1 is the training signal for the critic output. The 
motion commands of the robot  are the sum of the actor 
output vector a, and the random number  vector rndt_, that 
represents the trial and error factor~The actor output vector 
a,< is trained by the training signal: 

a,,t-1 = a,-1 + ~" rnd,-1 (3) 

Finally, the neural network is trained by back propagation 
according to Eqs. 2 and 3. In this way, motion commands 
are trained in order to gain more  critic output. 

Experimental system and environment 

Figure 2 shows the robot  and the monochrome visual sensor 
(Khepera and the K213 vision turret that was used in this 
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Fig. 1. The concept of direct-bision-based reinforcement learning 
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work. The specifications of Khepera and the K213 vision 
turret are as follows. 

Height: 33mm 
Diameter: 55 mm 
Interface with PC: RS232C (serial port)  
Transmission rate: 38400bps 
Sensor cells: 64 
Gradation: 256 gray scale 
Visual field: 36 ~ 

This visual sensor is composed of two parts, the image per- 
ception optics and the light intensity detector optics, as 
shown in Fig. 2b. The light optics detect the intensity of  the 
light around the robot, and then the image perception optics 
adjust the image sensory outputs according to the light in- 
tensity. Therefore,  when the light intensity is not strong 
enough, the image perception optics attempt to compen- 
sate, resulting in all the pixel values becoming almost white. 
As a result, the robot  is unable to distinguish bright points 
and dark points. Therefore, when a black target object is 
located just in front of, and on the right side of, the robot, 
the robot loses the target. 

Figure 3 shows the experimental environment. The ac- 
tion area was 70 • 70cm and was surrounded by a 10cm-tall 
white paper wall. A fluorescent light was installed to main- 
tain an adequate amount  of light intensity. The target was 
8 cm tall and 2.5 cm in diameter, and was wrapped in black 
paper. 

Application to a real robot 

Coping with a time delay 

When direct-vision-based RL  is applied to a real robot,  a 
time delay should be considered, although this does not 
have to be considered in simulations. The PC receives visual 
sensory signals f rom the real robot  through an RS232C 
serial port, and its transmission rate is not  fast enough. The 
approximate time needed to execute each process is as 
follows. 

Transmission of visual sensory signals: 90msec 
Transmission of motion commands: 10 msec 

Fig. 2. a Khepera and the K213 
vision turret that was mounted 
on the Khepera. b K213 vision 
turret 
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Computation of neural network: less than 1 msec (for both 
forward computation and learning) 

Considering the measurement interval of the visual sensor, 
the sampling time is set to 300msec. If the motion com- 
mands are transmitted to the robot just after the transmis- 
sion of the visual sensory signals, the robot continues to 
move according to the previous motion command during 
the transmission of the visual sensory signals. Then the 
robot location obtained from the visual sensory signals is 
different from the location when the next motion command 
is transmitted. Here, in order to reduce this influence, the 
visual sensory signals are transmitted just after the motion 
command. Figure 4 gives the timing of system events in this 
experiment. It can be seen that P, is influenced by the action 
of a~_2 on behalf of a~_~. The critic learns according to Eq. 2, 
as in the simulation. On the other hand, the motion com- 
mand, which is sent two steps earlier, is trained by the 
training signal as 

a~,f-2 = a t -2  + ~ '  rndt 2 (4) 

on behalf of the signal as in Eq. 3. 

Fig. 3, Experimental environment 

Discrete actions 

Since the motion command for the Khepera must be an 
integer, the continuous motion value is discretized into a 
"speed" integer by Eq. 5. 

speed, : (iut)8" (a t + rnd,) 

If(speed, --< - 3 )  speed, = - 3  

If(speed~ >-- 3) speed, = 3 
(5) 

- 3  --< speed, ~< 3, -0 .5  --< a, --< 0.5, - 0 .2  --< rnd, <- 0.2, where 
speed is the motion command for the robot. 

Experiment 

Task 

The goal of the real mobile robot with the monochrome 
visual sensor is to reach the target. Here, a three-layered 
neural network with 64 input units, 30 hidden units, and 3 
output units was used. The neural network inputs were 
gray-scale values of the raw visual sensory signals. One of 
the outputs was for the critic, and the other two were for the 
actor. Before learning, the input-hidden connection weights 
were small random numbers, and all of the hidden-output 
connection weights were 0.0. The output function for each 
hidden or output neuron is a sigmoid function with an out- 
put range of from -0.5 to 0.5. 

After the visual sensory signals have been transmitted, 
they are binarized using a boundary value of 85. The 
"width" of the target was defined as the number of dark 
pixels in the robot 's view. The "center pixel" was defined 
as the center pixel number in the dark area. When 30 -< 
width, and 21 -< center pixel -< 41, the critic output is 
trained to be 0.9 as a reward. When the robot loses the 

Fig. 4, Timing chart in a real robot state transit ion 
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Fig. 5. Distribution of the 
evaluation values, a 400 trials; 
b 1000 trials; c 3200 trials; d 6000 
trials 
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target,  it is t ra ined to be 0.1 as a penalty.  Otherwise,  the 
critic is t ra ined according to Eq. 2 at every t ime-step with 
r = 0. Each trial is s topped  after 150 time-steps,  even if the 
robot  has not  reached the target  object. For  t ransforming 
the critic output  of the neural  ne twork  into the actual critic 
value, 0.5 is added  to the critic output .  The discount factor 

is 0. 99. 
We now explain how the robot ' s  initial posi t ions are 

determined.  The  initial posi t ions of the width and center  
pixel are randomly chosen from the ranges 5 --< width -< 29 
and 5 -< center  pixel --< 59. This means  that  the robot  can 
always find the ent ire  target  in its initial view. The robot  
then goes to the initial posi t ion autonomously,  according to 
a p rogram which is provided  beforehand.  When  the robot  is 
first starting to learn, it is initially p laced close to the target,  
since it moves only according to the random numbers.  As  
the learning progresses,  however,  the initial robot  locat ion 
range gradually becomes  wider. 

Learning results 

Figure 5 shows the critic dis tr ibut ion after learning. The  loci 
of the target  are also shown for two different  initial posi- 
tions in Fig. 5c and d. Figure 6 shows the loci of the robot  
using the absolute  coordinates  after 6000 trials (in Fig. 5d). 
The  critic dis tr ibut ion is drawn by computing the neural  
network off-line for 1338 sample sets of visual sensory sig- 
nals. The vertical  axis in Fig. 5 indicates the width and the 
horizontal  axis indicates the center pixel of the target  object  
in the robot ' s  view. It can be seen that  as the learning 
progresses,  the slope of the critic dis t r ibut ion is fo rmed and 
beomces steep at first, and then becomes more  gradual.  This 
is because the number  of t ime steps needed  to reach the 
target  becomes smaller,  while the discount factor is always 
the same. It  can also be seen that  the critic output  is low on 
the right side of the figures, especially in Fig. 5b. Af te r  that, 
the critic dis tr ibut ion becomes symmetr ical  again. The  rea- 
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Fig. 6. The track of the robot on the field after 6000 trials 

son is tha t  the  ta rge t  d i sappears  f r o m  the  robo t ' s  v iew w h e n  
it is p l aced  at the  loca t ion  shown in Fig. 5a owing  to the  
sensor  character is t ics  m e n t i o n e d  in Sect.  3. W h e n  the  r o b o t  
loses the  ta rge t  objec t  nea r  t he  goal,  the  critic va lue  for  the  
p rev ious  states b e c o m e s  low. A f t e r  that ,  since the  r o b o t  
learns tha t  it ro ta tes  first, and  t h e n  goes  fo rward  af ter  catch- 
ing the  ob jec t  a round  the  center ,  the  critic d i s t r ibu t ion  be-  
comes  symmet r i ca l  again. 

F igure  7 shows a t ime-ser ies  of  p h o t o g r a p h s  tha t  show 
h o w  the  r o b o t  reaches  the  t a rge t  ob jec t  exact ly  af ter  6000 
trials. 

Conclusion 

Direc t -v i s ion -based  R L  was appl ied  to a real  mob i l e  r o b o t  
wi th  a l inear  m o n o c h r o m e  visual  sensor.  A f t e r  cons ider ing  
the  t ime-de lay  in t ransmi t t ing  the  visual  sensory  signals, it 
was p r o p o s e d  that  the  ac tor  ou tpu t s  a re  t r a ined  using the  
critic o u t p u t  at two t ime-s teps  ahead.  I t  was shown  tha t  a 
real  mob i l e  robo t  could  r each  a t a rge t  ob jec t  by learn ing  
f r o m  scratch wi thou t  any advance  k n o w l e d g e  or  he lp  f r o m  
humans .  
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Fig. 7. The robot succeeded in reaching the target object after 6000 
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