Artif Life Robotics (2004) 7:145-150
DOI 10.1007/s10015-003-0269-1

© ISAROB 2004

ORIGINAL ARTICLE

Katsunari Shibata - Masanori Sugisaka

Dynamics of a recurrent neural network acquired through learning a

context-based attention task

Received and accepted: July 11, 2003

Abstract Selective attention is a very important function
for robots acting in the real world. In this function, not only
attention itself, but also context extraction and retention
are very intelligent processes and are not easily realized. In
this article, an attention task is presented in which context
information must be extracted from the first pattern pre-
sented, and using the context information, a recognition
response must be generated from the second pattern pre-
sented. An Elman-type recurrent neural network is used to
extract and retain the context information. The reinforce-
ment signal that indicates whether the response is correct or
not is the only signal given to the system during learning.
By this simple learning process, the necessary context
information got to be extracted and retained, and then
the system changed to generate the correct responses. The
function of associative memory was also observed in the
feedback-loop in the Elman-type neural network. Further-
more, the adaptive formation of basins was examined by
varying the learning conditions.

Key words Attention - Associative memory - Context ex-
traction - Recurrent neural network - Adaptive basin forma-
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1 Introduction

It is necessary for robots acting in the real world to handle
huge quantities of sensor signals. In order to extract the
necessary information for a given task, both “active percep-
tion” and “selective attention” are indispensable. Some
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context information is often used to suggest which informa-
tion is necessary in the present sensor signals. However, the
context information itsell should be extracted from the
series of past information, and it should also be retained
until the time when the context information is needed.

Sakaguchi' proposed selecting the information source by
which the entropy of an object model decreases the most.
However, the handling of the context information was not
mentioned. McCallum® mentioned both selective attention
and short-term memory. In that article, attention and
memory meant that the state could be identified by the
previous sensor signals. In this article, attention means to
focus on one part of many sensor signals using some context
information.

On the other hand, in associative memories using a mu-
tually connected neural network, the coding of information
to be memorized is usually given in advance. In order to
obtain the associative memory function adaptively, the
Hebb rule, or an extension of the Hebb rule such as covari-
ance learning, is often employed. In such learning, however,
a pattern that is presented frequently is memorized regard-
less of whether the pattern is necessary for the task or not.
Furthermore, small images are often used directly as memo-
rized patterns. However, since visual sensory information
has huge number of signals in most cases, it is not effective
to memorize all the signals directly without any processing:
it is necessary to compress them by extracting only the
necessary information.

In the field of information compression, the coding of
compressed information has often been decided on the
basis of exactly how the original input pattern can be re-
stored, such as principle component analysis, or a sand-glass
neural network in which an identical mapping is learned.
However, when some context information is memorized
after being compressed, the restoration itself is not usually
the main purpose in the robotics field, and such coding often
includes unnecessary information. The coding should be
decided by necessity for given tasks.

Zipser focused on a delayed match to sample tasks using
monkeys.” In these tasks, since the monkey is required to
indicate which pattern was presented earlier, it has to retain
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information about the pattern presented. He proposed us-
ing an Elman-type recurrent neural network® trained by
back propagation through time (BPTT)” as a model of the
monkey.® An analog signal and a gate signal were the inputs
to the neural network. The network was trained to behave
like a flip-flip, so that the analog input the last time the gate
input was activated continues to be output as long as the
gate signal is not activated. It was then shown that the
neural network picks a new value when the gate signal is
activated, keeps that value when the gate signal is not acti-
vated, and acquires a dynamic to converge to a fixed point.
It was also shown that the output pattern is similar to the
activating patterns of real neurons in the brain. However,
recognition, attention, and autonomous coding in associa-
tive memory were not considered because the input signal is
only one analog signal in spite of the multiple dimensions of
input, such as an image, and it does not need to be com-
pressed to be memorized.

We have dealt with a simple image as the input signal,
and shown that the function of context extraction, associa-
tive memory, and attention can be acquired through the
learning of a delayed recognition or attention task using a
recurrent neural network.’

In these tasks, the outputs of the neural network have
one-to-one correspondence with the patterns presented. In
the delayed recognition task, a pattern is presented first,
and after some time, the network is trained according to the
training signals in which only the corresponding output to
the presented pattern is large. In the delayed-attention
task, an arrow pattern was presented first, and after some
time, another pattern was presented in which some small
subpatterns were joined. Then the network was trained ac-
cording to the training signal that indicated the subpattern
in the corner that was pointed out by the first arrow pattern.

After learning, the pattern could be classified into one of
two categories. The input signal had multiple dimensions,
and the system was required to reduce the dimensions to
keep the information in a limited number of hidden units. It
was found that the dynamics of the neural network was
fixed-point convergent, and for any input patterns, includ-
ing the patterns that were not used in learning, the hidden
state converged to one of the four fixed points, each of
which corresponded to an arrow direction. This means that
the system could not only learn to pay attention according
to the context, but could also learn that the arrow direction
is important for the given task. Adaptability in the form of
the basin was also observed.

We also showed a similar result for the case where
only a reinforcement signal, which represents whether the
classification response is correct or not, is given. Other
knowledge, for example, how to extract the necessary infor-
mation, whether the system should retain some information
or not, how to code the stored information in the hidden
layer, and how to use the context information to generate
an appropriate response from the second pattern presented,
was not given. Through a simulation, we checked whether
only the arrow direction was extracted and retained by
learning based on BPTT even though the arrow patterns
varied even for the same arrow direction. It was also

confirmed that the system classified the corresponding
subpattern correctly using the context information, and that
the hidden state had the dynamics of fixed-point conver-
gence, in other words, the function of associative memory
was observed in the hidden layer.”

In this work, the network dynamics acquired through
learning was observed in detail. We also report the results
of an examination of the flexibility in the basin formation.

2 Context-based attention task

Figure 1 shows the attention task and system employed in
this work. One arrow pattern pointing in the direction of
one of four corners is first presented as on the left-hand
side of Fig. 1. After a while, another pattern, which consists
of four small subpatterns, is presented on the same visual
sensor as on the right-hand side of Fig. 1. The system is then
required to classify the subpattern at the corner where the
first arrow pattern pointed. The subpattern is classified into
one of three categories.

The arrow direction presented first can be upper right,
upper left, lower right, or lower left. The size of the original
arrow image is 7 X 7 = 49. One pixel value, selected ran-
domly, is inverted as noise with a probability of 0.5. The
visual sensor consists of 5 X 5 = 25 visual cells, and one part
of the original arrow image is cropped. So a total of 3 X 3 =
9 patterns can be presented for each arrow direction if the
noise is not added. For the noise, 9 X (25 + 1) = 234
patterns can be presented for each arrow direction. A5 X5
image is put into an Elman-type recurrent neural network.
The input signal is —1.0 for the white pixel, and 1.0 for the
black one. The time is set as = 0.

At a randomly selected time in the range from 5 to 14 at
each trial, which is denoted by T, a pattern that consists of
four small subpatterns is presented on the same visual sen-
sor that the first arrow pattern was presented on. The size of
the subpattern is 3 X 3, and it can be a square, cross, or a
plus. Since the sensor size is 5 X 5, the subpatterns overlap
each other in the middle row and the middle column. In
such areas, the sensor signal is the average value of the
overlapping pixels.

There are three output units, each of which corresponds
to one of the subpatterns. The response from the system is
decided according to the probability, which is proportional
to the sum of each output and 0.5. The output function of
each unit in the network is a sigmoid function whose value
ranges from —(0.5 to 0.5 except for the input layer. When the
response is correct, the system gets a reward of 1.0, otherwise
it gets a penalty of —1.0 as a reinforcement signal, r. The
training signal for the output corresponding to the response
issetat (0.4 % r. The training signal for the other outputs is set
at —(.4 when the response is correct, and otherwise it is not
given. This means that the system cannot know the correct
answer directly when the answer is not correct.

At every time step from¢ = 1 tor = T — 1, all the input
signals are 0.0. The number of hidden units is 20, and the
values of the hidden units are 0.0 at ¢ = (. The initial weight
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Fig. 1. The flow of the context-based attention task discussed in this
article. Two 5 X 5 binary patterns are presented, with an interval 7 that
is selected in the range from 5 to 14 time-units. The first pattern is part
of one of four 7 X 7 arrow patterns. The second pattern consists of four

values are 0.0 for the hidden-output connections, and are
decided randomly from —1.0 to 1.0 for the hidden-input
connections. For the hidden-hidden feedback connections,
the weight value is 4.0 for the self-feedback connections,
and 0.0 for the others. The self-feedback connection weight
is set at 4.0 because the maximum derivative of the output
function is 0.25 around input = 0.0, and the error signal
clfectively goes backward through time without diverging
because 0.25 X 4.0 = 1.0.

When the mutually connected neural network is used for
an associative memory, the connection weights are usually
symmetrical, because the network dynamics always be-
comes fixed-point convergent when the weights are sym-
metrical. Hebb learning, which is often employed for the
learning of associative memory, cannot realize asymmetri-
cal connections. Here, although the initial connections are
symmetrical, no such constraint is imposed during learning.

3 Simulation result

Some simulation results after 1000000 learning trials are
shown in this section. One trial is defined as the sequence
from the presentation of the arrow pattern to the response
and learning. The learning curve is shown in Fig. 2. The
value of the vertical axis shows the average error. For
the output corresponding to the correct response, when the
output is larger than 0.4, the error is 0.0, and otherwise it is
the square of the difference from 0.4. For the other outputs,
the error is 0.0 when the output is smaller than —0.4, and
otherwise it is the square of the difference from —0.4. The
sum of the errors for three output units was computed, and
then the average of the sum over 10000 trials was com-
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small 3 > 3 subpatterns. The system is required to state which is the
subpattern at the corner pointed at by the first arrow pattern. Thus, the
system should extract the direction of the arrow, but it is only told
whether the recognition response is correct or not
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Fig. 2. Learning curve

puted. If the maximum output is supposed to be the correct
response, a wrong response appeared about once per 10000
trials. Depending on the initial connection weight values in
the neural network, it sometimes fails to learn.

At the next stage, the context extraction and associative
memory function are observed. The first patterns presented
should be classified into one of four categories because
only the direction of the arrow pattern is needed when
considering the second pattern presented. As mentioned
above, a total of 234 patterns can be taken as one category.
Here, the distance between two patterns in a layer is defined
as the sum of the absolute value of the difference in each
unit.

Figure 3 shows the change in the standard deviation of
each category o, and the distance between the centers of two
categories d;. Figure 4 shows a rough image of the variables.
These variables are shown for the input pattern at 1 = 0,
and the hidden patterns atr = 0 and ¢ = T — 1 after being
normalized by the standard deviation of all the patterns o in
order to observe the relative relations, For simplicity, the
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Fig. 3. The change in the distances between categories and the stan-
dard deviation of one category. All values are relative values compared
with the standard deviation of all patterns

data from the last 1000 trials were used instead of observing
all the possible input patterns.

When the variables for the input pattern at 1 = 0 are
seen, the standard deviation of each pattern is larger than
the maximum distance between two categories, max; ().
The distance d; becomes larger at the hidden layer than
at the input layer at r = 0 for any combinations of catego-
ries. The distance between the hidden patterns also
becomes larger through time. While the standard deviation
0, in each category becomes almost 0.0 atr = T — 1, it is far
smaller than the minimum distance between two categories,
min, (d,). This means that the dynamics of the recurrent
network is almost fixed-point convergent, and one fixed
point is formed for each category. In the cases where the
system gave an incorrect response, the interval 7" was 5 or 6.
It is presumed that if the reminder time is longer, the system
could generate the correct answer.

Figure 5 shows the changes in the average patterns for
each category for three cases, i.e., for the input pattern at
t = 0, and the hidden patterns att = Oandr = T'— 1. In the
average input pattern, one pixel value at a corner takes 1.0
with a high probability, but since a noise is added to one
pixel, it is not 1.0 exactly. In the average hidden pattern at
t = 0, no values are close to the maximum value 0.5 or the
minimum value —0.5, while at + = 7" — 1, almost all the
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Fig. 5. The changes in the average patterns of input and hidden layers
for each category

values are close to 0.5 or —0.5. The dynamics of fixed-point
convergence can also be seen in this figure.

Figure 6 shows two examples of the dynamics. Here, 15
pixels in a total of 25 pixels have a different value between
the two input patterns even though both were generated
from the same original arrow pattern. Even in the hidden
patterns at ¢ = 0, the values are still different by more than
0.5 in 15 units of a total 20 units. However, as in the lower
part of the figure, both hidden states converge to the same
hidden state.

In order to find the size of the basin corresponding to
each category, the input signals were set randomly and the
hidden state at t = 100 was observed. Table 1 shows the
number of hidden states whose distance is less than 1.9 from
the average hidden state of one category, because 1.9 is the
maximum distance from the average hidden state to one
hidden state in the same category atr = 7 — 1. It can be seen
that the number, in other words the size of the basin, varies
considerably depending on the category. The variation
depends on the initial connection weights of the neural
network.



Fig. 6. Two examples of the hid-
den-state change. The dynamics of
fixed-point convergence can be ob-
served. The dots in the input pat-
terns indicate that the values are
different between corresponding
pixels. The dots below parts of the
hidden states indicate that the
value changed by more than 0.5
over time. Both input patterns
originated from the lower left di-
rected arrow, but more than half of
the pixels are different
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Table 1. Adaptive change in the basin size for each category in the
whole input space according to the learning condition. The parentheses
indicate cases where the hidden state at t = T — 1 is different from the
convergent hidden state

Condition Category

0 1 2 3 Others
Normal 1075 3853 1160 3912 0
Fixed_sensor (categories 2, 3) 2039 7527 248 186 0
Fixed_sensor (all categories) 841 468  (3528) 4670 493
3 categories 2138 2203 5627 - 32
Fixed interval (T = 10) 1286 (5719) 1306 1679 10

When the number of cropping ways into a 5 X 5 image
from the original 7 X 7 arrow pattern is limited to only one
in spite of 3 X 3 = 9 for two of the four categories, the basins
change, as in the second row in Table 1. It can be seen that
the basin becomes smaller for the category for which the
cropping way was limited. In the other two simulations with
different initial connection weights, a difference can be ob-
served, but is not so clear. There is one case in which the
basin is larger in one category of limited cropping way than
in one category of the normal way.

When the cropping way was limited to one for all four
categories, learning was faster and more stable, and eight
basins were formed. The dynamics seems complicated in
this case. That may be because the basins are small and not
so steep, and therefore they do not cover the whole input
space. It takes a long time for the hidden pattern to con-
verge. The numbers in the third row in Table 1 are counted
when ¢ = 200 for this condition only. Some of them do
not come into any of the four categories. The number for
category 2 is put in parentheses because the final conver-
gence point is different from the hidden state at around
t=T-1.
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hidden state (t = 0)

When the number of categories is reduced to three, the
basins change as in the fourth row of Table 1. It can be seen
that the number of large basins is three, and another small
basin was formed. In the other two simulations with a differ-
ent random number sequence, the number of basins formed
is only three. It is considered that the number of basins
becomes equal to the number of categories when the input
pattern used in learning varies to some degree.

When the presentation time of the second pattern is
fixed at ¢ = 10 while learning, the four main basins are
formed as in the fifth row of Table 1, but for category 1, the
hidden state at ¢ = 10 is different from the final fixed point.
In this case, the values of the three hidden neurons changed
after 1 = 10. Figure 7 shows how such neurons change their
values. The x-axis shows the output of one of the hidden
neurons, and the y-axis shows the output of another. Each
of the four lines in this figure shows the change in the
hidden neurons’ output for each of four input patterns in
category 1. It can be seen that the hidden states were almost
all the same at ¢ = 10, and the speed of change in the hidden
state became slow. However, after that, the change gradu-
ally became fast again, and finally converged to the real
fixed point. In a simulation with different initial connection
weights, four categories can be distinguished from each
other, but only three basins are formed. This means that the
hidden state at ¢ = 10 for one category changes and finally
converges to the fixed point for another category.

4 Conclusion

It has been shown that context extraction and short-term
memory with the associative memory function can be ac-
quired in a recurrent neural network through learning a
delayed-attention task only by the reinforcement signal
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Fig. 7. The change in the states of the two hidden neurons for four
cases of input patterns in the same category when the presentation time
for the second pattern is fixed at t = 10

indicating whether the recognition response is correct or
not. The dynamics of a Elman-type recurrent network after
learning a context-based attention task was observed, and
was found to be almost a fixed-point convergent. When the
input patterns cover the input space to some extent, the
number of basins becomes equal to the number of catego-
ries required for the task, even though the size of the basin

varies considerably. The dynamics was rational and adap-
tive according to the learning conditions.

Acknowledgment Part of this research was supported by Grants-in-
Aid for Scientific Research of the Ministry of Education, Culture,
Sports. Science and Technology of Japan (No. 13780295).

References

1. Sakaguchi Y (1993) Sensory integration and active perception in
tactile perception (in Japanese). J IEICE 76:1222-1227
2. McCallum AK (1996) Learning to use selective attention and short-
term memory in a sequential task. From animals to animats 4, The
MIT Press, Cambridge, MA, p 315-324
3. Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial cod-
ing in primate prefrontal neurons revealed by oculomotor para-
digms. J Neurophysiol 63:814-831
. Elman JL (1990) Finding structure in time. Cogn Sci 14:179-211
. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal
representations by error propagating. Parallel distributed process-
ing, vol 1. MIT Press, Cambridge, p 318-362
6. Zipser D (1991) Recurrent network model of the neural mechanism
of short-term memory. Neural Comput 3:179-193
7. Shibata K, Ito K (2000) Formation of attention and associative
memory based on recognition learning (in Japanese). IEICE Tech-
nical Report (NeuroComputing), NC99-137, p 153-160
8. Shibata K (2001) Formation of attention and associative memory
based on reinforcement learning. Proceedings of the ICCAS (Inter-
national Conf. on Control, Automation and Systems), ICASE, Jeju
Island, Korea, p 9-12

[ =N



