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Abstract:  In order to provide a guideline about the number of hidden neurons N (h )and learning rate  for large-scale 

neural networks from the viewpoint of stable learning, the authors try to formulate the boundary of stable learning 

roughly, and to adjust it to the actual learning results of random number mapping problems.  It is confirmed in the 

simulation that the hidden-output connection weights become small as the number of hidden neurons becomes large, 

and also that the trade-off in the learning stability between input-hidden and hidden-output connections exists.  Finally, 

two equations N (h )
= N

(i)
N
(o)  and = 32 / N

(i)
N
(o)  are roughly introduced where N (i)  and N (o) are the number 

of input and output neurons respectively even though further adjustment is necessary for other problems or conditions. 
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1. Introduction 
A neural network with error back propagation (BP) [1] 

has a strong supervised learning ability, and is very 

powerful when desired functions cannot be written easily 

by human hands.  In the robotic field, activities in the 

real world should be considered increasingly hereafter, 

but the programs developed for such a complicated 

environment have not been working so effectively until 

now.  For example, human's flexible image recognition is 

far superior to those developed by human hands.  

Furthermore, the development of higher-order functions 

has been far slower than expected.  That might be 

because the human brain is massively parallel and 

cohesively flexible with huge sensor signals, and our 

sequential consciousness cannot perceive precisely what 

the brain is doing[2].  Therefore, the authors have 

advocated that a large-scale neural network as a parallel 

and flexible learning system is essential to develop 

human-like intelligence.   

In general, many of the researches concerning about 

large-scale neural networks seems to focus on the 

hardware implementation such as [3].  In order to realize 

complicated functions using a neural network, the main 

stream seems to direct to "modularization" such as [4].  

The authors think that non-uniform connections should 

be introduced, but closer connections between modules 

are required than in the present modularized neural 

network.  The possibility of a non-modularized 

large-scale neural network as a parallel and flexible 

system in flexible image recognition can be seen in [2]. 

When considering the use of a large-scale neural 

network, the concern is that learning becomes more 

unstable as the number of inputs becomes larger.  

However, the authors noticed in reinforcement learning 

of a task with a layered neural network that learning was 

unexpectedly stable even with a large number of 

inputs[5].  In this paper, the authors try to formulize 

appropriate number of hidden neurons and learning rate 

roughly and to examine them in random number 

mapping problems.  Of course, since learning depends 

deeply on a given task, that cannot be applied generally, 

but the authors expect it to be useful as a guideline for 

constructing a large-scale neural network. 

2. Formulation 
Since neural networks have a large variety, several 

assumptions are given as follows before starting the 

discussion to prevent divergence and to give a trigger.   

(1) The neural network has three layers and no recurrent 

connections.  Each neuron has connections from all the 

neurons in the previous layer below.  There are no 

direct connections from input to output layer.  Bias 

input is introduced in each neuron. In the followings, 

the upper suffixes (i)(h)(o) indicate input, hidden and 

output layer respectively. 

(2) Regular Error Back Propagation (BP)[1] learning is 

used.  No inertia term is introduced. 

(3) The output function of each neuron except for input 

neurons is sigmoid function ranged from 0.0 to 1.0. 

(4) Input and output patterns are generated by uniform 

random numbers that are independent of each other.  

The value range of input is from 0.0 to 1.0 and that of 

output (training signal) is from 0.1 to 0.9. 

(5) The initial hidden-output connection weights w
(o)

 

are all 0.0.  That means that all the outputs are initially 

0.5.  The connection weights w
(o)

 and also the error 

signal 
(o)

 in the output layer are assumed to have a 

symmetrical distribution with respect to the origin.  

(6) Learning rate  is the same for all the connections. 

(7) The increase of the computation time due to the 

increase of number of hidden neurons is ignored by 

expecting parallel computation in some future. 

Here, as a rough standard for the stability of learning, 

the change of internal state (net value) u  through 

learning for the same input patterns is focused on.  The 

modification of the weight from the i-th input to the j-th 

hidden neuron can be written as  

   w ji
(h )
= j

(h )
xi
(i)

 (1) 

where  is a learning rate, x
i

(i)
 is the output of the i-th 

input neuron that means i-th input from outside.  j
(h )

 is 

the propagated error signal for the j-th hidden neuron 

defined as j
(h )
=

E

u j
(h )

 where E  is the squared error 
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defined as E =
1

2
t
k

x
k

(o)( )
2

k=1

N
(o)

.  t
k

 and x
k

(o)
 are the 

training signal and output  for the k-th output neuron, and 

N
(o)

 is the number of output neurons. 

The change of the internal state can be written as 

   u j
(h ) = w ji

(h )
xi
(i)

i=1

N
( i )

= j
(h )

xi
(i)( )

2

i=1

N
( i )

. (2) 

Because x
i

(i)( )
2

0 and x
i

(i)
 is assumed to have the same 

probability distribution between neurons, the expectation 

of u j
(h )

 is proportional to the number of inputs N
(i)

.  If 

u j
(h )

 becomes large, the output of the neuron is 

completely different from the previous output value and 

that causes the instability of learning.  This is the origin 

of the concern that learning becomes unstable when the 

neural network becomes large-scale.  However, actually, 

since the next inputs are usually different from the 

previous inputs, the boundary of stable learning with 

respect to N
(i)

 might be between N
(i)

 and N
(i)

.  

N
(i)

 is derived from the standard deviation of the sum 

of N
(i)

 independent 0-mean variables. In the followings, 

N
(i)

 is used as a representative for the moment. 

Here, the authors set up a hypothesis from their 

experiences that when the number of hidden neurons 

becomes large and redundant, the number of hidden 

neurons with similar response increases.  Then the 

hypothesis is that the level of absolute value of 

hidden-output connection weights w
(o)

 is inversely 

proportional to the number of hidden neurons N
(h )

.  The 

propagated error signal j
(h )

 in the hidden layer is 

computed from the sum of the output error signal 
k

(o)
 

weighted by wkj
(o)

 as 

j
(h )
= f ' (u j

(h )
) wkj

(o)
k
(o)

k=1

N
(o)

 (3) 

where f () is the sigmoid function and f ' ()  is its 

derivative. Accordingly, j
(h )

 is also inversely 

proportional to the number of hidden neurons N
(h )

. 

Finally, the effect of the number of output neurons is 

considered.  The propagated error on a hidden neuron is 

computed as the above Eq. (3).  Under the assumption 

that f ' (u j
(h )
)  and wkj

(o)
k
(o)

k=1

N
(o)

 are independent, the 

standard deviation of j
(h )

is indicated as 

j

(h) = f ' (u j
(h )
) wkj

(o)
k
(o)

k=1

N
(o)

f ' (u j
(h )
) wkj

(o)
k
(o)

k=1

N
(o) 
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where var() indicates the variance of a random variable, 

and the over-bar indicates the expectation.  If it is 

assumed that the propagated error signalswkj
(o)

k
(o) from 

different output neurons are completely independent of 

each other, the deviation becomes as 

j

(h) = f ' (u j
(h )

)
2

+ var( f ' (u j
(h )

))
 
 
 

 
 
 

wkj
(o)

k
(o)( )

2

k=1

N
(o)
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)
2

+ var( f ' (u j
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))
 
 
 

 
 
 
N

(o)
w1 j

(o)

1

(o)( )
2
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(o)

f ' (u j
(h )

)
2

+ var( f ' (u j
(h )

))
 
 
 

 
 
 
w1 j

(o)

1

(o)( )
2

, (5) 

while, if wkj
(o)

k
(o) is completely dependent on each other, 

the deviation becomes as 

j

(h) = f ' (u j
(h )
)
2

+ var( f ' (u j
(h )
))

 
 
 

 
 
 
N
(o)2

w1 j
(o)

1

(o)( )
2

    

    = N (o)
f ' (u j

(h )
)
2

+ var( f ' (u j
(h )
))

 
 
 

 
 
 
w1 j
(o)

1

(o)( )
2

.       (6) 

Actually, u j
(h )

 would be proportional to the value 

between N
(o)

 and N
(o)

.  In the followings, N
(o)

 is used 

as a representative.  The boundary of stable learning of a 

hidden neuron is summarized as 
N
(i)

N
(h )
N
(o)

 by adding 

the effect of learning rate  to the above discussions. 

When the change of internal state in an output 

neuron u
k

(o)
 is focused on, the error signal 

k

(o)
 is not 

much influenced by the number of neurons because the 

propagated error in the output layer is directly calculated 

from the difference between the training signal and 

output in each neuron.  Therefore, u
k

(o)
 is thought to be 

proportional only to N
(h )

 or N
(h )

. 

Here, a trade-off is formed that if the number of 

hidden neurons becomes too large, the output neurons 

becomes unstable, and if the number of hidden neurons 

becomes too small, the hidden neurons becomes unstable 

again.  Then an equation can be introduced to balance the 

trade-off as 

   
N
(i)

N
(h )
N
(o)
= N

(h )
 (7) 

where the right and left hand sides are derived from the 

viewpoint of the boundary of stable learning in hidden 

neurons and output neurons respectively, and  is a 

constant for consistency.  The equation is rough and 

tentative, and so tuning is done after the following 

simulations.  Now the tentative guideline to decide the 

number of hidden neurons is written as 

   N
(h )
= N

(i)
N
(o)

. (8) 

The guideline for an appropriate learning rate  can be 

considered as follows.  The left and right hand sides of 

Eq. (7) also influence the learning speed.  Accordingly, 
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appropriate learning rate keeps each side of Eq. (7) 

constant that is the maximum value in the range of stable 

learning.  The appropriate values of  and  must be 

deeply depending on the given task.  Therefore, it is a 

good idea that the appropriate values for one condition 

are found through a simulation, and then appropriate 

values are guessed for the other conditions.  

 

 

3. Simulation 
In this section, learning of random input-output patterns 

is done and the results are used to examine the validity of 

and adjust the formulation introduced in the previous 

section.  The followings are the setups in the simulation. 

(1) The task is supervised learning of random 

input-output patterns.  Each input is randomly chosen 

from 0.0 to 1.0 and the training signal for each output 

neuron is also chosen randomly from 0.1 to 0.9 to 

prevent the output from being in the saturation range 

of sigmoid function.  The number of patterns is 20.  

The patterns are presented in a fixed order. 

(2) The condition of successful learning is that the 

difference between output and training signal for all 

patterns and all outputs is less than 0.01. 

(3) The initial hidden-output connection weights w(o)  

are all 0.0 as mentioned.  In the preliminary 

simulations for the case of 1,000 input neurons, 

learning is the fastest when the initial weights are 

chosen randomly from -0.5 to 0.5.  In order to keep the 

value level of hidden neurons constant, the value range 

of the initial input-hidden connection weights is 

inversely proportional to N
(i)

 with reference to the 

range from -0.5 to 0.5 at N
(i)

=1,000. The expectation 

value of internal state of hidden neurons is 0.0 because 

the distribution of initial w(h ) is symmetrical.  The 

standard deviation is proportional to N
(i)

 according 

to the equation as 

 
u
(h) = w ji

(h )
xi
(i)

i=1

N
( i ) 

 

 
 

 

 

 
 

2

 

         = w ji
(h )
xi
(i)( )

2

i=1

N
( i )

= N
(i)

w11
(h )
x1
(i)( )

2

. (9) 

The number of input N
(i)

, hidden N
(h )

 and output 

neurons N
(o)

 and also learning rate  are varied, and the 

average number of iterations over 20 simulation runs to 

reach the successful learning are observed, and it did not 

reach the success in 3,000 iterations, the number is set to 

3,000. 

Figure 1 shows the results for 5 combinations of the 

number of inputs and outputs.  By comparing the result 

between (a)(b)(c), the effect of number of inputs N
(i)

 

can be seen.  While, by comparing the result between 

(a)(d)(e), the effect of number of outputs N
(o)

 can be 

seen. 
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Fig. 1 The number of iterations to meet the condition of 

successful learning as a function of the number of 

hidden neurons N
(h )

 for the 5 combinations of the 

number of inputs and outputs, N
(i)

 and N
(o)

.  Each 

plot shows the average of 20 simulation runs with a 

different random sequence.  When N
(i)

=100,000 (Fig. 
(c)), only 3 points are plotted to save the time. 
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In all the graphs, we can see that when the number 

of hidden neurons is fixed, learning becomes faster in 

proportion to the learning rate at first, but when it 

becomes too large, the learning performance becomes 

worse suddenly.  As is well known, that suggests the 

existence of appropriate step size in learning.  When the 

learning rate is fixed, the downward slope of the lines is 

observed.  It might be explained by the following two 

reasons.  The increase of the number of hidden neurons 

N
(h )

 causes the appearance of similar hidden neurons, 

and works as well as the increase of the learning rate.  

Actually, when the input-hidden weights for the first 320 

hidden neurons are copied 3 times to the other 960 

hidden neurons, the learning became faster than the case 

of 320 hidden neurons, and the speed is less than, but 

close to the case of 1280 hidden neurons.  Furthermore, a 

large number of hidden neurons also cause a large 

possibility of existence of useful hidden neurons before 

learning and also a large repertoire of solutions.  The 

optimal learning rate seems to depend only on the 

number of hidden neurons.  It looks that when the 

number of hidden neurons becomes twice, the optimal 

learning rate becomes 1/2.  That roughly matches the 

discussion in the previous section. 

When the minimum number of iterations for each 

number of hidden neurons is observed, the difference is 

not so large, but the optimal number of hidden neurons 

looks to exist for each combination of N
(i)

 and N
(o)

.  

For example, in Fig. (a), the minimum number of 

iterations for the case of 80 hidden neurons is less than 

100 and it is the minimum value when the number of 

hidden neurons is varied.  It can be seen that according to 

the increase of the number of input neurons, the optimal 

number of hidden neurons becomes larger from around 

80 in Fig. (a) to around 640 in Fig. (c).  As for the 

increase of the number of output neurons, it also 

becomes larger from around 80 in Fig. (a) to around 640 

in Fig. (e).  Then, it is noticed that when the number of 

inputs is 10,000 (Fig. (b)), learning is so slow in the case 

of N
(h )

=20 comparing with the case of N
(h )

=160 even 

though learning converged successfully even in the case 

of N
(h )

=20 for all the 20 simulation runs with =0.1.  

This result matches that a large number of hidden 

neurons made learning stable in our previous simulation. 

Figure 2 shows the change of the maximum absolute 

value of hidden-output connection weights w
(o)

 and 

propagated error
(h )

 in the neural network for 5 

simulation runs for the case of N
(i)

=10,000, N
(h )

=160, 

N
(o)

=10 and =0.2.  In order to examine whether w
(o)

 

and 
(h )

 decreased as the increase of number of hidden 

neurons, w
(o)

 at the end of learning and the maximum 
(h )

 during learning are observed in the followings. 

Figure 3 shows the maximum absolute value of 

hidden-output connection weights w
(o)

 after learning 

for 3 combinations of N
(i)

 and N
(o)

.  It can be seen that 

the maximum connection weight decreases when the 

number of hidden neurons becomes large along a straight 

|w
|
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Fig. 2 The change of hidden-output connection 

weights and propagated error during learning. 
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Fig. 3 The maximum hidden-output connections 

weights w
(o)

 after learning as a function of the 

number of hidden neurons for 3 cases.  
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line.  The value does not change so much depending on 

the number of input neurons N
(i)

, output neurons N
(o)

, 

or the learning rate .  From the slope of the line in Fig. 3, 

the relation of w
(o)

 and N
(h )

 is w
(o)
=10 /N

(h )
2

3 .   

Figure 4 shows the maximum absolute value of the 

propagated error 
(h )

 during learning.  It can be seen 

that 
(h )

 also decreases as the increase of N
(h )

 even 

though it is varied by the learning rate .  The slope is 

not so clear as the case of w
(o)

 (Fig. 3), and looks 

depending on N
(i)

 or N
(o)

.  When investigating the 

reason of the gentle slope in the case of N
(o)

=1,000 (Fig.  

(d)) and =0.025, the absolute value of correlation 

coefficient between w
(o)

 and 
(o)

 was large when 

N
(h )

=1,280, but it was small whenN
(h )

=80.  When N
(i)

  

changes, the value does not change so much by 

comparing (a) and (b), but when N
(o)

 becomes 100 

times, the value becomes more than 10 times by 

comparing (a) (c) and (d). 

Finally, the trade-off between the stable learning of 

input-hidden and hidden-output is examined.  Figure 5 

shows the change of outputs of hidden and output 

neurons for one of the 20 input patterns for the three 

cases of number of hidden neurons when N
(i)

=10,000, 

N
(o)

=10 and =0.2.  In the case of N
(h )

=20, the output 

of output neurons changes slowly, while that of hidden 

neurons changes fast and finally stay around 0.0 or 1.0 

that is the saturation ranges of sigmoid function.  In the 

case of N
(h )

=160, the output of both kinds of neurons 

looks to change smoothly.  In the case of N
(h )

=320, the 

output of output neurons looks to oscillate hard.  This 

represents that small number of hidden neurons causes 

the instability of input-hidden connections, while large 

number of hidden neurons causes the instability of 

hidden-output connections.  In all the graphs, many of 

the hidden neurons are biased to 0.0 or 1.0.  Some of 

them change its value depending on the presented 

patterns, but some of them do not change.    The value 

range of initial input-hidden weights was decided with 

respect to the learning speed in the preliminary 

simulations, but the number of biased hidden outputs is 

larger than expected. 
 
 

4. Tuning of Formulation 
From Fig. 4 (b) or (c), the effect of number of hidden 

neurons on the size of hidden propagated error is set to 

O(N (h )
1

2 )  that is less than O(N (h )) in the formulation.  

The reason can be thought that twice of the same hidden 

neurons does not lead to twice of learning speed and also 

that twice of hidden neurons does not generate twice of 

the similar hidden neurons. 

The effect of N (o) is not so clear in the simulation, 

but O(N (o)
2

3 )  is used here by comparing Fig. 4 (a) and (d). 

Since the effect of N
(i)

 and N
(o)

 is very similar from 

Fig. 1, the effect of N
(i)

 is also set to O(N (i)
2

3 ) .  

Furthermore, from Fig. 1, the appropriate learning rate is 

inversely proportional to the number of hidden neurons 

N
(h )

, and the effect of N
(h )

 on the learning stability of 

hidden-output connection is set to O(N (h )).  Then Eq. 

(7) and (8) can be rewritten as 

      N
(i)
2

3N
(o)
2

3 /N
(h )

1

2 = N
(h )

 (10) 

      N
(h )

9

8 = N
(i)
N
(o)

. (11) 
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Fig. 4 The maximum propagated error 
(o)

 during 

learning as a function of the number of hidden neurons.  

Please note that the scale of the vertical axis is different 
between upper and lower two graphs. 
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In the simulation, since the number of hidden neurons is 

doubled and doubled, and the number of the other 

neurons is decupled and decupled, the precision is not so 

high originally.  Then, the exponent 9/8 in Eq. (11) is 

approximated roughly to 1.  Since the optimal number of 

hidden neurons N
(h )

 when N
(i)

=1,000, N
(o)

=1,000 is 

around 1,000, they are substituted in Eq. (11).  Then, 

=1 is derived and Eq. (8) becomes as simple as 

      N
(h )
= N

(i)
N
(o)

. (12) 

As for the learning rate , the optimal value is 

depending only on the number of hidden neurons, and 

the number of hidden neurons becomes twice, the 

optimal learning rate becomes 1/2.  When N
(h )

=320, the 

optimal =0.1.  The relation can be written as 

      =
32

N
(h )

=
32

N
(i)
N
(o)

 (13) 

 

 

5. Conclusion 
Learning stability in large-scale neural networks has 

been investigated.  It was confirmed in the simulation of 

random pattern mapping problems that hidden-output 

connection weights become small when the number of 

hidden neurons becomes large, and also that the trade-off 

in the learning stability between input-hidden and 

hidden-output connections exists.  With respect to the 

learning stability, a rough guideline of appropriate 

number of hidden neurons N
(h )

 and learning rate  are 

introduced as N
(h )
= N

(i)

+

N
(o)

 and = 32 / N
(i)
N
(o)

 

where N
(i)

 and N
(o)

 are the number of input and output 

neurons respectively.  Since the guideline was obtained 

based on the learning results of random pattern mapping 

problems on some conditions, it should be adjusted for 

other problems or other conditions. 

Employing symmetrical output function and also 

employing different learning rate for each layer were not 

considered in this paper, but they might be promising 

from the discussions in this paper.  
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Fig. 5  The change of the outputs of 10 hidden and 4 

output neurons during learning for the 3 cases of 

number of hidden neurons N
(h )

, 20, 160 and 320,  with 

N
(i)

=10,000, N
(0)

=10, =0.2.  Many of the 10 hidden 

neurons cannot be seen because they take the value 
around 0.0 or 1.0. 


	Back

