
Emergence of Flexible Prediction-Based Discrete
Decision Making and Continuous Motion Generation

through Actor-Q-Learning

Katsunari Shibata
Dept. of Electrical and Electronic Engineering

Oita University, Oita, JAPAN
Email: shibata@oita-u.ac.jp

Kenta Goto
Dept. of Electrical & Electronic Engineering

Oita University, Oita, JAPAN
Presently Nabtesco Corporation, JAPAN

Abstract—In this paper, the authors first point the importance
of three factors for filling the gap between humans and robots in
the flexibility in the real world. Those are (1)parallel processing,
(2)emergence through learning and solving “what” problems,
and (3)abstraction and generalization on the abstract space.
To explore the possibility of human-like flexibility in robots, a
prediction-required task in which an agent (robot) gets a reward
by capturing a moving target that sometimes becomes invisible
was learned by reinforcement learning using a recurrent neural
network. Even though the agent did not know in advance that
“prediction is required” or “what information should be pre-
dicted”, appropriate discrete decision making, in which ‘capture’
or ‘move’ was chosen, and also continuous motion generation in
two-dimensional space, could be acquired. Furthermore, in this
task, the target sometimes changed its moving direction randomly
when it became visible again from invisible state. Then the agent
could change its moving direction promptly and appropriately
without introducing any special architecture or technique. Such
emergent property is what general parallel processing systems
such as Subsumption architecture do not have, and the authors
believe it is a key to solve the “Frame Problem” fundamentally.

I. INTRODUCTION

It is a great ability for humans to behave flexibly and
appropriately in the real world filled with a huge amount
of information, and the difficulty in achieving it in robots
has been standing as a great barrier that blocks them from
being intelligent. The authors believe that there are three
main factors required to achieve the ability. One of them is
a parallel processing that enables us to consider many things
in parallel and to make appropriate decisions immediately
without being disturbed by the “Frame Problem” [1]. However,
it is very difficult to design the parallel processing because
our consciousness is not parallel but sequential. “Subsumption
Architecture” [2] is a kind of parallel system, but the interface
design among the modules (layers) must disturb its flexibility.
Acquiring non-preinstalled ability through experiences is also
expected. Accordingly, learning with high degree of freedom
in a parallel processing system is essential.

When we develop a function in a robot through learning,
we usually focus on its algorithm, in other words, “how a
function, for example, recognition of a ball, is realized”, but it
is really important to solve “What” problems, such as “what
function is required” or “what pattern should be recognized”
before solving the “How” problems. Brooks mentioned a
similar thing to abstraction process [2]. However, it is seriously

time-consuming to find the solution to the “What” problems
by examining almost infinitive number of possible candidates
one by one. Thus, another key factor from this viewpoint is
emergence of necessary functions and internal representations
through autonomous learning in a parallel system without any
directions from outside.

We, in the future, will not meet completely the same sensor
signals as present probably. However, in humans, what was
learned in a situation is utilized sophisticatedly in a similar
situation for its purpose even though the sensor signals are
different. Accordingly, the final factor is abstraction from
sensor-signal space and generalization on the abstract space.

Therefore, to raise an intelligent robot to a new stage,
it seems promising to let a parallel processing-and-learning
system learn autonomously as our brain is doing. What meets
the condition is the combination of a neural network (NN)
and reinforcement learning (RL) [3]. To deal with memory or
dynamics in the NN, a recurrent structure is essential to be
introduced. The combination of the recurrent neural network
(RNN) and RL has been applied to memory-required or
dynamical tasks, but it is limited in simple tasks such as “pole-
balancing” problems [4]–[6] and “maze with discrete action”
problems [7], [8] due to the difficulty in learning. Recently,
our group has shown its usefulness in communication [9],
context-based behavior [10], exploration [11] and retrospective
understanding of pattern meaning [12].

On the other hand, it has been considered useful for
developing an intelligent robot or agent that an RNN learns
to predict future sensor signals from the present sensor signals
and action, and the intermediate representation of the RNN
is used as an abstract and context-considered state represen-
tation [4], [13], [14]. However, when the number of sensor
signals is huge, all of them cannot be predicted and prediction
targets have to be chosen among them by a designer. That
means a “What” problem mentioned above has come out.
The authors showed [15] that by Q-learning [16] with an
RNN, an agent (robot) could learn to capture a moving object
in a two-dimensional space where it often became invisible.
The agent learned a prediction-required series of actions only
from rewards and punishments without giving “prediction is
necessary” or “what is the prediction target” explicitly.

In this paper, a similar “invisible-target-capture” task is
employed, but it is far more difficult in many points such that

two-dimensional continuous motion should be learned instead
of one-dimensional discrete action as in [15]. Furthermore,
while the target is invisible, it sometimes changes its moving
direction and then appears again. Therefore, when the target is
invisible, the agent has to predict the target location from the
signals while the target was in sight, but if the target appears
again and its motion contradicts to the predicted one, the agent
has to switch its motion flexibly to the one based on the new
prediction.

In this task, two-dimensional continuous motion has to
be generated, and also a discrete decision of ‘capture’ or
‘move’ should be made. To learn both of them simultaneously,
Actor-Q-learning [17] is employed. Actor-Q-learning has not
been applied yet to any tasks except for an active perception-
and-recognition task [17]. In this paper, the effectiveness of
Actor-Q-learning in another task is examined and whether it
works with an RNN is also examined. Furthermore, a network
structure and initial connection weights of the RNN are also
tested.

II. REINFORCEMENT LEARNING (RL) WITH A NEURAL
NETWORK (NN) [3]

Reinforcement learning (RL) is autonomous and purposive
learning based on trials and errors, and a neural network
(NN) is usually used as a non-linear function approximator
to avoid the state explosion due to the curse of dimension-
ality. As mentioned above, our group has claimed that the
combination of them enables parallel consideration, function
emergence, abstraction and generalization. Through learning,
necessary functions such as recognition and memory (when
using RNN) emerge only from rewards and punishments to get
rewards and/or to avoid punishments. The flexible and parallel
processing is expected to contribute to solving the “Frame
Problem” [1] or the “What” problems by saying goodbye to
the “Functional Modules” approach, in which each functional
module is sophisticatedly programed independently and such
modules are integrated to develop an intelligent agent.

A. Actor-Q-learning with a Recurrent Neural Network (RNN)

Actor-Q-learning is a learning method for the simultaneous
learning of both discrete decision making, which is called
action here, and continuous motion generation [17]. Actor-
Critic [18] is combined with Q-learning [16], and one of the
Q-values is used on behalf of the Critic. Here, a recurrent
neural network (RNN) is used for the learning. The system
is consisted of one RNN whose inputs are sensor signals. In
Actor-Q-learning, the outputs are divided into two kinds: Q
outputs and Actor outputs. The Q outputs are responsible to
making a discrete decision or action selection. A decision is
made according to the Q-values as in the case of the regular
Q-learning. The Actor outputs are responsible to continuous
motion generation. Actual motion is chosen stochastically in
the range whose center is decided by the Actor outputs. That is,
the actual motion is the sum of the Actor output vector m(st)
and a random number vector rndt for exploration where st is
the input (sensor signal) vector at time t.

As for the training, Q-outputs are trained according to the
Q-learning algorithm, and Actor outputs are trained in the same
way as Actor-Critic, but the Q-value for chosen action is used

on behalf of the Critic. To train the RNN based on RL, training
signals for the RNN are derived by RL and the RNN is trained
by supervised learning using the training signals. The training
signal of Q-output for selected action at (other Q-output(s) are
not trained) is

Qtrain,at,t = rt+1 + γ max
a

Qa(st+1) (1)

where rt+1 indicates the reward signal at the time t + 1, and
Qa(st+1) indicates Q-output for action a when the sensor
signal vector s at time t + 1 is the input of the network. TD-
error is defined as

r̂t = Qtrain,at,t−Qat(st) = rt+1+γ max
a

Qa(st+1)−Qat(st).
(2)

The training signals for the Actor outputs are

mtrain,t = m(st) + r̂trndt (3)

where m(st) is the Actor output vector when st is the input
of the RNN, and rndt is the exploration vector as mentioned.
Then Qtrain,at,t and mtrain,t are used as training signals,
and the RNN with the input st is trained once according to
BPTT (Error Back Propagation Through Time) [19]. Here,
the sigmoid function whose value ranges from −0.5 to 0.5 is
used as the output function of each hidden or output neuron.
Therefore, to adjust the value range, the range of the output
neuron [−0.5, 0.5] is shifted to that of the actual Q-value
[−0.2, 0.8]. The Actor outputs are used directly without any
transformation. What should be emphasized is that the learning
is very simple and general, and as the readers will notice, no
special learning for the given task is applied.

III. SIMULATION

A. Invisible Target Capture Task

The task is described in Fig. 1. There is a field with the size
of 8.0× 3.0. In each episode, a target starts from the left end
of the field. Its initial y-coordinate, py,0, the x-component of
its velocity, vx,0 and its moving direction from the x-axis, θ0,
are randomly chosen as in the figure. Here, the velocity means
the move in one step. The target moves straight, and when it
reaches y = 0.0 or y = 3.0, it bounces at a wall, and vx

and vy are changed to 0.9 times and -0.8 times respectively.
An agent is initially located at (7.0, 1.5). When it chooses
“move” action, it moves according to the sum of the Actor
output vector m(st) and exploration vector rndt. One move
is limited in ±0.4 in each of x- and y-directions that is the half
of the maximum vx of the target. When it chooses “capture”
action, it does not move and captures the target at the next step.
If dist < 1.0 and px > 6.0 where dist is the distance between
the agent and target and px is the target’s x-coordinate, the
agent can get a reward, and the episode is terminated. The
reward value is given as 0.7 ∗ (1.0 − dist2) considering the
value range, but when the target is captured at 6.0 < px ≤ 6.1,
it is discounted to (px−6.0)∗10 times for smooth change in the
reward value along px. If the agent chooses “capture” action
when px < 6.0 or dist > 1.0, or does not choose it until
px > 8.0, a small penalty -0.1 is imposed. In these cases, the
episode is not terminated until px > 8.0 for acceleration of
learning, but it is terminated in the test phase after learning.

For prediction to be required to accomplish the task,
sometimes the target becomes invisible on the visual field.

0.5

8.0 8.0
0.0
0.0 6.0

0.0

3.0

field (target) field (agent)

41x16

17x7

0.2

11x16

5x7

input layer
(sensor cell layer)

discrete decision(action)
(Q)

“capture” “move”

continuous motion
(Actor)

vagent,x vagent,y

feedback
connections lower hidden

upper hidden

output

initial
connection weights

random
-0.1 to 0.1

0.0

locally connected

(self-feedback)

(other-feedback)
4.0

0.0

No. of
neurons

4

30

154

input 832

(from input layer)

layer

lower hidden layer

upper hidden layer

output layer

17

7

41

16

7

5

11

16

actual field

Fig. 2. Actor-Q-learning with a recurrent neural network (RNN). Please refer to the body text in detail. Number of neurons and initial weights in each layer
are shown in the right table.

8.03.00.0

3.0

x

y

maximum invisibility area

target
start

 py,0

2.5

0.5

θ0

agent start
(7.0, 1.5)

(-45 ~ 45)

vx,0 (0.4 ~ 0.8)

Bounce at wall
vx,after = 0.9vx,before

vy,after = -0.8vy,before

, px,0, vx,0: randomly chosen
 at each episode

θ0

Invisibility area & Unexpected target motion

40%: not appear

40%: normal

3.0<start<3.7, 3.8<end<4.5, 0.8<width

vx

center
width

start end

vy

vy,0=vxtanθ

successful
capture area

1.0

6.0

agent moving
area

invisibility area
(target is invisible
 in the area)

3.0<center<8.0,

60%: appear

0.0<width<5.03.0<start,

vx = 0.40.01<py<2.99, -45 < < 45 ,θnew target location and motion:

20%: unexpected target motion after the area is introdued

invisibility area:

invisibility area:

Fig. 1. “Invisible target capture” task.

As written in the upper part of Fig. 1, with the probability
of 60%, an invisibility area, whose parameters such as width
are randomly decided, but the start of the area is not less
than 3.0, appears. When the invisibility area finishes, the target
appears again in the visual field, but when the end of the area is
large, the agent has to capture before it appears. In such cases,
the agent has to predict the target location from the trajectory
before it disappears. However, since the agent does not know
where the invisibility area covers in advance, it cannot know
when the target disappears or appears.

To examine the emergence of switching between two
strategies, contradiction to the prediction before disappearance
occurs with the probability of 20%. In this case, the invisibility
area appears in the range of 3.0 ≤ x ≤ 4.5 on the condition
of width > 0.8. When the target appears again from the
invisibility area, its y-coordinate py and moving direction θ
are chosen randomly, and vx is set to the minimum of 0.4.

Accordingly, the prediction from the target movement before
the disappearance is not helpful, and the agent has to observe
the new target movement and predict the future state again.

Figure 2 shows the input, output and architecture of the
RNN. Two visual sensors fixed in the world coordinate system
are assumed; one is for the target and the other is for the agent.
The sensor cells are arranged on the two-dimensional plane
with the interval of 0.2 for each of x- and y-direction, and
each cell has a small receptive field. The output of each cell
is calculated as a Gaussian function whose input is the target
or agent location, and the signals from the cells are the input
of the RNN. So, there are 41× 16 = 656 inputs for the target
location and 11× 16 = 176 inputs for the agent location, and
832 input signals in total.

The lower hidden neurons are also arranged on two-
dimensional plane, and each neuron initially has a local respon-
sible area, which means that the initial weights are calculated
by a Gaussian function of the distance between the centers
of the hidden and input neurons in the plane as shown in
Fig. 2. Each of these neurons also has feedback connections
from all the neurons in this layer as an Elman network. The
initial self-feedback and other feedback connection weights
are 4.0 and 0.0 respectively for effective and non-divergent
propagation of error signal in BPTT because 4.0 is the inverse
of the maximum derivative of the sigmoid function. The initial
weights between the lower and upper hidden neurons are all 0.0
that makes all the outputs of NN are 0.0 initially not depending
on the inputs because the output of each neuron is 0.0 when
the sum of its inputs is 0.0. The initial weights between the
upper hidden and output neurons are random values in ±0.1,
and the upper hidden neurons are expected to integrate the
information about the target and agent through learning.

In Actor-Q-learning, the outputs are divided into Q-value
outputs and Actor outputs as mentioned. Here, there are
two outputs for Q-values, each of which is corresponding to
“capture” or “move” action (decision). One action is selected
according to Boltzmann selection [20] referring to the Q-values
after the linear transformation as mentioned. There are also

two outputs for Actors, vagent,x and vagent,y , each of which
represents continuous-valued agent move in x- or y-direction.
As an exploration factor, a uniform random number is added
to each Actor output, and the agent moves according to the
sum. Parameters used in this learning are shown in Table I.

TABLE I. PARAMETERS USED IN LEARNING. ‘->’ MEANS THE VALUE
IS REDUCED LINEARLY DURING LEARNING.

learning rate
 (for feedback)
 (for others) 0.1->0.05

0.02->0.01

discount factor 0.96

exploration (uniform
 random number) size
 for actor

±0.5->±0.15

temperature for
 Boltzmann selection

0.05->0.025

B. Results

Figure 3 shows the learning curves. Fig. 3(a) and Fig. 3(b)
show the change in the success rate and that in the average
obtained reward respectively. The exploration factors change as
the number of episodes in both discrete actions and continuous
motions during learning, and they influence the performance.
Then, to see the influence of the factors, the performance when
using the weights after learning is also plotted in each graph.
In Fig. 3(b), two kinds of learning curve are shown. One shows
the average of obtained reward over only successful episodes
and the other shows that over all the episodes in each 1,000
episodes. The success rate is almost 0 at first and in most cases,
the agent chose “capture” action before the target reaches the
range of px > 6.0. However, the rate increases gradually, and
finally it reaches almost 100%. The average over successful
episodes is around 0.4 at first. When one location is randomly
chosen in the success area around the agent that is a circle with
the radius of 1.0, the expected reward is 0.35 that is the half
of the maximum reward. As learning progresses, the reward
is getting larger gradually. After learning, the performance
was observed in 10,000 episodes with a random initial states.
The number of failure episodes was 4. In one case, “capture”
was chosen before the target comes into x > 6.0, and in the
other three cases, the distance from the target to the agent was
more than 1.0. The average reward was 0.656, and the average
distance between the target and agent was 0.21.

The learning is performed 10 times by changing the random
number sequence that is used to decide the initial connection
weights, target motion and invisibility area at each episode,
and also the exploration of the agent at each step. After
learning, the average number of failures in 10,000 episodes
is 9.0 (0.09%, SD 5.2) and the average reward is 0.652 (SD
0.003). When the local initial connection as shown in Fig.
2 is not employed and just using random numbers to decide
them, the average number of failures is 57.6 (SD 20.7) and the
average reward is 0.630 (SD 0.007). On the other hand, when
the initial self-feedback connection weights are 0.0 instead of
4.0, learning is very slow and the number of failures is 1,687.
When the regular no-traceback BP (Back Propagation) is used
for learning of RNN instead of BPTT, the number of failures is
2,312. In these two cases, just one simulation is done with the
same initial connection weights to the case whose results are
shown in this paper. These results suggest that the local initial
weights between lower hidden layer and input layer and also
error-signal propagation to the past state by BPTT through 4.0
self-feedback connection weights are good for learning.

0 20
(x105)Number of episodes

105 15

su
cc

es
s

ra
te

 (
%

)

0

50

100

0 20
(x105)Number of episodes

105 15

av
er

ag
e

re
w

ar
d

0.0

0.7

0.4

average over successful episodes

average over all episodes

average over successful episodes
 (weights after learning is used
 for reference)

(weights after learning is used
 for reference)

(a) success ratio

(b) average reward

Fig. 3. Learning curves. (a) Success rate, (b) Average rewards

Figure 4(a) shows sample trajectories in 4 cases after
learning when the size of the invisibility area is the maximum.
In the case 1, the x-component of the target velocity vx,0 is the
minimum of 0.4, and the location where the agent has to get is
close to the lower wall at y = 0. In the case 2, the initial target
location py,0 and vx,0 are the same, but the moving direction
θ is different, and so the agent has to go toward the upper wall
at y = 3. In the case 3, py,0 and θ0 are the same as the case
1, but vx,0 is the maximum of 0.8, so the timing to capture
the target is completely different. In the case 4, the target goes
parallel with the wall with the maximum velocity. The target
location before disappearance is close to the case 3, but the
capture position is completely different. In all the cases, it
is seen that the agent approaches the target, and successfully
captures it. It is interesting that the agent goes to the left end of
the agent movable area at x = 6.0 at first, and when the target
comes close, the agent goes to right ahead of the target. Same
tendency can be seen in other simulation runs. That might be
because the agent can capture the target in smaller number of
steps by capturing it at smaller x-coordinate around x = 6.0
than around x = 8.0. One more reason might be that even if
the agent does not choose “capture” action by the exploration
factor in Boltzmann selection, it can capture the target at the
next step by moving the same direction as the target.

Figure 4(b) shows the change of Q values that are two of
the RNN outputs in one episode for the cases of 1 and 3 where
only the target velocity vx,0 is different. In either case, the Q-
value for “capture” is far smaller than that for “move” action
at first by the penalty when the agent chooses the “capture”
action at too early timing. The Q-value for “move” increases
gradually, but the Q-value for “capture” rises up suddenly, and
becomes larger than that for “move” action finally. By the
penalty at px > 8.0, the Q-value for “move” decreases at last.
The larger Q-value at each step increases gradually, and the
slope is close to the ideal one by the discount rate 0.96. It
is seen that even though the initial Q-value is around 0.4, Q-
value for “move” becomes different soon depending on vx,0.
That means that the agent can know the difference of capture
timing soon after the target starts.

6.0 8.03.00.0

3.0

x

y

case 1

case 2

case 1

case 2

target
start

py,0= 0.5

agent
start

vx,0= 0.4

vx,0= 0.4

θ 0=45

θ 0=22.5

6.0 8.03.00.0

3.0

x

y

case 3

case 3

case 4case 4

target
start agent

start
vx,0= 0.8
θ 0= 0

py,0= 0.5

py,0 =2.5

vx,0= 0.8

1 10 17

ca
p
tu

re

move
move case 1

step

Q
-v

al
u

e

5 15

0.7

0.0
-0.1

case 3

0.4

1 10 17 step

A
ct

o
r

5 15

0.5

0.0

-0.5

case 3 case 1

vagent,x

(a) Sample trajectories

(b) Change of Q-values

(c) Change of Actor values

reward:0.64

reward:0.66

reward:0.63

reward:0.65

invisible (case 1)
invisible (case 3)

invisibility area

vagent,x

vagent,y
vagent,y

ideal curve

θ 0=45

invisible (case 1)
invisible (case 3)

ca
p
tu

re

Fig. 4. (a) Sample trajectories of agent and target after learning, and the
change in (b)the Q-values and (c)Actor values for the two cases in (a) in
which only the target velocity is different.

Figure 4(c) shows the Actor outputs. As seen also in the
trajectories in (a), x-component of the agent velocity vagent,x

is negative at first, and before the Q-value for “capture”
increases, it begins to increase. At the 17th step in the case 1
and at the 9th step in the case 3, since the “capture” action is
chosen, the agent does not move actually, but the outputs are
shown for reference. If “move” action is chosen by exploration,
the Actor outputs are used. It is interesting that after the y
component of the target velocity, vy changes positive after the
second bounce in Fig. 4(a), vagent,y increases even though the
target was invisible.

Figure 5 shows (a) the capture timing and (b) x-coordinate
at the capture timing for various x-component of the initial
target velocity vx,0 and moving direction of the target θ0 for
three cases. Ideal values are drawn in the first graph. In the
second and third one, the actual values in the cases with no
invisibility area and with the maximum invisibility area are
drawn. In Fig. 5(c), y-coordinate at the capture timing for
various θ0 and initial y location of the target py,0 is shown.
In Fig. (a), even though the length of the longest episode 17
is more than double of the shortest episode 8, (a-2) and (a-3)

(b) x-coord. of the agent at the capture timing as a function of vx,0 and (py,0=1.5).0

vx,0
0.4 0.80.70.60.5-4

5
4

5
0

θ
(

)
2

2
.5

-2
2

.5

vx,0
0.4 0.80.70.60.5 vx,0

0.4 0.80.70.60.5-4
5

4
5

0
2

2
.5

-2
2

.5

-4
5

4
5

0
2

2
.5

-2
2

.5

(a-1) ideal (a-2) no invisiblity (a-3) max invisibility 8

10

9

11

13

14

15

16

17

12

vx,0
0.4 0.80.70.60.5-4

5
4

5
0

θ
(

)
2

2
.5

-2
2

.5

vx,0
0.4 0.80.70.60.5 vx,0

0.4 0.80.70.60.5-4
5

4
5

0
2

2
.5

-2
2

.5

-4
5

4
5

0
2

2
.5

-2
2

.5

(b-1) ideal (b-2) no invisiblity (b-3) max invisibility 6.0

7.0

6.2

6.4

6.6

6.8

p
y
.0

-45 450

θ ()
22.5-22.5

(c-1) ideal (c-2) no invisiblity (c-3) max invisibility
0.0

3.0

1.0

2.0

1.5

2.5

0
.5

2
.5

1
.5

2
.0

1
.0

p
y
.0

0
.5

2
.5

1
.5

2
.0

1
.0

p
y
.0

0
.5

2
.5

1
.5

2
.0

1
.0

-45 450

θ ()
22.5-22.5 -45 450

θ ()
22.5-22.5

0.5

θ
(

)

θ
(

)

θ
(

)

θ
(

)

(a) capture timing as a function of vx,0 and (py,0=1.5).θ0

0 0 0

(c) y-coord. of the agent at the capture timing as a function of 0 and py,0 (vx,0= 0.6).θ

0 0 0
000

θ

Fig. 5. (a) Capture timing and (b) agent’s x-coordinate at the timing as
a function of vx,0 and θ0 after learning for three cases including the ideal
case. (c) Agent’s y-coordinate at the capture timing as a function of θ0 and
py,0 also for the three cases. vx,0, θ0, and py,0 are x-component of velocity,
moving direction, and y-coordinate of the agent in the initial state respectively.
Each figure is made from the results in 81 × 61 test episodes after learning.

are very similar to (a-1). Especially, it is seen that due to the
bounce of the target to the walls, the capture timing becomes
late when the absolute value of the moving direction θ0 is
larger also in (a-2) and (a-3). The number of steps is a little bit
larger in total than ideal especially in Fig. 5(a-3). That might be
because the approach is not so precise due to the invisibility,
and so the agent avoids capturing the target with penalty at
(px < 6.0) or with discounted reward at (6.0 ≤ px ≤ 6.1).

From Fig. 5(b), it is known that even when the capture
timing is the same, x-coordinate at the capture is depending
on the target x velocity vx,0. The reason of larger x-coordinate
in total in (b-3) might be the same reason as the late capture
timing in (a-3). In (b-3), vertical lines can be seen slightly
at vx = 0.5, 0.6, 0.75. That is the discontinuous change due
to the difference in whether the target around x = 3.0 is in
the invisibility area or not by the small difference of vx. In
Fig. 5(c), especially (c-3) looks different from (c-1), but the
tendency of the y-coordinate change by the change in py,0 and
θ0 is reflected also in (c-3). It is also seen that the agent did not
go around a wall (y = 0 or y = 3) to capture the target. That
might be because the target sometimes moves contradicting to
the prediction result, and also there are no possibility that the
target goes to y < 0.0 or y > 3.0.

Finally, Fig. 6 shows a sample in which the target move-
ment was changed when the target appeared again. In the
case 5, the target movement was compatible with that before
being invisible, and the agent could catch the target at the
upper area. In the case 6, the target y velocity is inverted

invisible

6.0 8.03.00.0

3.0

x

y
case 5

4.5

target
start agent

start
vx,0 =0.4
θ 0=-45

py,0=2.5

case 6

1 10 17 step

A
ct

o
r

5 15

0.5

0.0

-0.5

(a) Sample trajectories

(b) Change of Actor values

reward:0.66

reward:0.65

case 5

1 10 17 step

A
ct

o
r

5 15

0.5

0.0

-0.5

case 6

vagent,x

vagent,y

vagent,x

vagent,y

invisible

Fig. 6. Change in the agent’s trajectory and Actor outputs caused by the
change in the target motion.

while being invisible so that the agent has to go to lower
area in contradiction to the first prediction. In these cases,
the invisibility area begins at x = 3, and ends at x = 4.5.
At first, the agent approached to x = 6.0 and after that went
upward slightly, but does not approach so close to the upper
wall. After the target appears again, the trajectories for the
two cases diverge quickly, and the agent can reach the target
in either case. Also in Fig. 6(b), it is seen that the Actor value
for the agent y motion vagent,y after the agent appears again
becomes positive in the case 5 and negative in the case 6. It is
interesting that in the case 6, the capture timing is later than
in the case 5. That might be because the agent could not reach
close to the target at the 16th step, and chose to capture it
at the 17th step after moving with positive vagent,x. It is also
suggested that the reason why the agent did not move so close
to a wall at early steps might be that the incompatible target
motion is also expected.

IV. CONCLUSION

In this paper, it is shown that in an “invisible-target
capture” task, both prediction-required discrete decision and
continuous motion could be learned only through reinforce-
ment learning using a recurrent neural network without giv-
ing “prediction is necessary” or “what information should
be predicted”. The authors think of nothing except for this
approach that can make an agent or robot acquire such flexible
behaviors through learning only from rewards and punishments
without giving any prior knowledge of the task. In this task,
since the target object sometimes changes its moving direction
randomly while being invisible, switching mechanism between
strategies is required in general. However, that was acquired

autonomously through learning without any additional archi-
tecture or technique. Such emergent property is what general
parallel processing systems such as Subsumption architecture
do not have, and the authors believe it is a key to solve the
“Frame Problem” fundamentally.

ACKNOWLEDGMENT

This research was supported by JSPS Grant in-Aid for
Scientific Research #19300070 & #23500245.

REFERENCES

[1] Dennett, D. Cognitive Wheels : The Frame Problem of AI. The Philos-
ophy of Artificial Intelligence, Margaret A. Boden, pp. 147-170, Oxford
University Press, 1984.

[2] R. A. Brooks, Intelligence without Representation. Artificial Intelligence,
47, pp.139-159, 1991.

[3] K. Shibata, Emergence of Intelligence through Reinforcement Learning
with a Neural Network. Advances in Reinforcement Learning, InTech,
pp.99-120, 2011.

[4] L.-J. Lin, & T. M. Mitchell, Reinforcement learning with hidden states,
From Animals to Animats 2, pp. 271-280, MIT Press, 1993.

[5] A. Onat, H. Kita, & Y. Nishikawa, Q-Learning with Recurrent Neural
Networks as a Controller for the Inverted Pendulum Problem, Proc. of
ICONIP 98, pp. 837-840, 1998.

[6] H. Arie, T. Ogata, J. Tani, & S. Sugano, Reinforcement learning of a
continuous motor sequence with hidden states, Advanced Robotics, 21
(10), pp. 1215-1229, 2007.

[7] A. Onat, H. Kita & Y. Nishikawa, Reinforcement learning of dynamic
behavior by using recurrent neural networks, Artificial Life Robotics, 1,
pp. 117-121, 1997.

[8] B. Bakker, V. Zhumatiy, G. Gruener & J. Schmidhuber, A Robot that
Reinforcement-Learns to Identify and Memorize Important Previous
Observations, Proc. of IROS 2003, pp. 430-435, 2003.

[9] K. Shibata, Discretization of Series of Communication Signals in Noisy
Environment by Reinforcement Learning, Adaptive and Natural Com-
puting Algorithms (Proc. of ICANNGA’05), pp. 486-489, 2005.

[10] H. Utsunomiya & K. Shibata, Contextual Behavior and Internal Repre-
sentations Acquired by Reinforcement Learning with a Recurrent Neural
Network in a Continuous State and Action Space Task, Advances in
Neuro-Information Processing, LNCS, 5506, pp. 755-762, 2009

[11] K. Goto & K. Shibata, Acquisition of Deterministic Exploration and
Purposive Memory through Reinforcement Learning with a Recurrent
Neural Network, Proc. of SICE Annual Conf. 2010, 2010.

[12] K. Shibata & H. Utsunomiya, Discovery of Pattern Meaning from
Delayed Rewards by Reinforcement Learning with a Recurrent Neural
Network, Proc. of IJCNN. 2011, pp. 1445-1452,2011.

[13] J. Schmidhuber, Reinforcement learning in Markovian and non-
Markovian environments, In D. S. Lippman, J. E. Moody, and D. S.
Touretzky (eds), Advances in Neural Information Processing Systems 3,
pp. 500-506, Morgan Kaufmann, 1991.

[14] J. Tani, Learning to generate articulated behavior through the bottom-
up and the top-down interaction process, Neural Networks, 16(1), pp.
11-23, 2003.

[15] K. Goto, & K. Shibata, Emergence of prediction by reinforcement
learning using a recurrent neural network, Journal of Robotics, 2010,
Article ID 437654, 2010.

[16] C. J. C. H. Watkins, Learning from Delayed Rewards, PhD thesis,
Cambridge University, Cambridge, England, 1989.

[17] K. Shibata, T. Nishino & Y. Okabe Active Perception and Recognition
Learning System Based on Actor-Q Architecture, Systems and Computers
in Japan, 33(14), pp. 12-22, 2002.

[18] A. G. Barto, et al., Neuronlike adaptive elements can solve difficult
learning control problems, IEEE Trans. on Systems, Man, and Cybernet-
ics, 13(5), pp. 834-846, 1983.

[19] D. E. Rumelhart, et al., Learning Internal Representation by Error
Propagation, Parallel Distributed Processing, MIT Press, 1, pp. 318-364,
1986.

[20] R. S. Sutton & A. G. Barto, Reinforcement Learning: An Introduction,
A Bradford Book, The MIT Press,1998

