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Abstract— Abstraction is a very important function for living
things. It generalizes the knowledge obtained through the
past experiences and accelerates the learning drastically by
applying the generalized knowledge to the present state. The
most important subject, the author think, is the criterion for
the acquisition of useful abstract information. Recently some
techniques in which not only the reconstruction of input signals,
but also the temporal relation of sensor signal patterns are
considered in the abstraction process have been proposed. They
seem rational because the information that affects the future
seems important. The abstract information space obtained
through such techniques is expected to be used as an effective
state space in reinforcement learning.

On the other hand, the author has advocated an idea
that whole the necessary functions from sensors to motors,
including recognition, memory, planning and so on, can be
acquired autonomously by reinforcement learning using a neu-
ral network, and higher functions are interpreted as the inner
part of the process. In this paper, it is proposed to use the
reinforcement signal as a rational criterion for abstraction and
the intermediate representation in a neural network trained by
reinforcement learning is considered as abstract information.
Spatial abstraction acquired through reinforcement learning us-
ing a neural network is demonstrated by showing the knowledge
transfer in a simple task in which the combination of sensor
and motor used in the task is chosen randomly at each episode.
The representation of the upper hidden layer acquired through
reinforcement learning is dependent on the object location but
almost independent on the selected sensor. Such representation
cannot be obtained by the above conventional techniques.

Index Terms— Spatial Abstraction, Knowledge Transfer,
Neural Network, Reinforcement Learning, Generalization

I. INTRODUCTION

If we, humans, had learned every task from scratch, we
would not have been intelligent existences anymore. One
important factor that makes us intelligent must be the ability
of “ABSTRACTION” in the both aspects of space and time.
Abstraction can be replaced by “feature selection” or “dimen-
sionality reduction”, and there are countless ways to realize
the reduction of dimensionality. Reinforcement learning is an
autonomous learning that enables an agent or robot to develop
and learn by itself. However, slow learning due to the trial-
and-error approach seems its fatal problem. Abstraction is
also expected to accelerate reinforcement learning drastically.

The most important subject concerning about abstraction,
the author think, is “what the criterion for the reduction
should be” and “how the abstraction based on the criterion is
realized”. Some techniques have been proposed to discover
a linear manifold in a high dimensional space such as prin-
ciple component analysis. Recently some other techniques
to discover globally non-linear manifold through local fitting
have been proposed such as [1]. In both cases, the criterion is
how well the sensor signals are reconstructed from the low-
dimensional abstract signals. However, all the information
that is necessary to reconstruct the input signals is not
always important for the real or artificial creatures to generate
appropriate actions.

In this aspect, “predictive representation”[2] and also “ac-
tion representing embedding”[3] might be popular and also
promising solutions for the “what the criterion should be”
problem at present. They consider not only the reconstruction
of sensory signal patterns, but also the temporal relation
between sensor signal patterns. They seem rational because
the information that affects the future seems important.
“Predictive representation” also has a smart implementation
method named TD-network[4]. Furthermore, it is easy to
introduce the temporal abstraction and has also a good
compatibility to reinforcement learning because TD learning
is the learning that utilizes the temporal relation, and is
widely used also in reinforcement learning.

However, the author is afraid that it has a serious problem
in real world applications where a huge number of sensor
signals should be processed. It must be impossible to predict
all the huge number of sensor signals. If the predicted
information must be decided in advance, it is abstraction
itself to decide what information should be predicted. In
order to solve this problem named “discovery problem”,
linear independence has been proposed as a criterion for the
prediction[5]. However, the discussion seems to be back to
the beginning.

J. Schmidhuber has provided a very interesting and im-
portant point that we don’t seem to care either unpredictable
or easily predictable information, and to “explore the pre-
dictable”. He also proposed a novel and clever system to
realize it[6]. Here, “predictable” can be the criterion for
abstraction. It seems also rational because it is certain that



prediction of unpredictable is meaningless. However, in order
to know whether a piece of information is predictable or not,
the system has to try to predict the information at first.

On the other hand, in “action representing embedding”[3],
the temporal relation between sensory signal patterns is
reflected on the abstract space, and so it is expected that the
relation of cause and effect is discovered. However, the same
effect can be expected in the way of abstraction proposed
in this paper, and an example that appears in the following
sections shows that “action representing embedding” is not
enough to know that two sensor signal patterns each of which
was derived from the same state but using a different sensor
came from the same state.

The author has been thinking that in real lives, a rational
criterion might be reinforcement signal such as reward and
punishment or genetic information, because they can be dis-
cussed in the context of the survival that is the most important
thing in the beings. If the idea is accepted, it is a natural
way that the abstraction is considered “in” reinforcement
learning, while the abstraction process is positioned prior
to and independent from the reinforcement learning in the
conventional approaches.

In this paper, the author proposes to introduce reward
and punishment as the criterion for the acquisition of useful
abstract information in real or artificial creatures. Reinforce-
ment learning is expected to optimize the abstraction au-
tonomously through learning on the basis of the explicit cri-
terion that the system gets more reward and less punishment.
In reinforcement learning, state or action value is trained
to change smoothly according time, and so the same effect
as the “action representing embedding” described above can
be expected. It is concerned that abstraction excludes some
potentially useful sensory information, but it has been shown
that learning in a layered neural network does not destroy
the formerly obtained information so much if the number of
neurons in the hidden layer is redundant enough[7].

II. ABSTRACTION “IN” REINFORCEMENT LEARNING
Now the point is how the abstraction is realized as a part
of reinforcement learning. Surprisingly the solution is very
easy and requires no special technique, but needs just a
switch of idea. The system consists of one neural network
and it is trained by the supervised signal generated based
on reinforcement learning. The hidden representations are
interpreted as abstracted representation of the input sensor
signals, which is also called observation vector. If a recurrent
neural network is introduced, it is expected that the temporal
abstraction can be dealt with. However, this paper focuses
only on the spatial abstraction. The author’s research group
already proposed to use a neural network for reinforcement
learning, and mentioned that the reinforcement learning can
be an autonomous, purposive and harmonious learning for
whole the functions we have from sensors to motors such as
recognition, memory, conversation and so on[8][9][10].
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Fig. 1. The difference in the observation vectors for the same state
depending on the used sensor.
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Fig. 2. An example to show that the state value and appropriate actions
help to know that two different observation vectors come from the same
state. In this case, the state is the same for the observation vectors os1(x1)
and os2(x1) and also the same for os1(x2) and os2(x2), but there are no
way to know that only from the observation vectors as in (a).

It may be difficult to explain the fact by this approach that
we can predict some things that seem unrelated to any reward
or punishment. However, on the contrary, can we assure that
there exist any things that have completely no relation to any
reward or punishment?

As mentioned at first, the important role of abstraction
is acceleration of learning by knowledge transfer using ab-
stracted knowledge. Here one example is given to demon-
strate the advantage of this approach. There are two sensors
each of which can observe the present state xt independently.
The system gets each observation vector os1 or os2 as a
part of its whole observation vector o as shown in Fig. 1.
If only one sensor is used in each episode, the target of
the prediction is completely different according to the used
sensor as shown in Fig. 2(a). This indicates that even though
the state is the same, the system cannot know the fact if the
used sensor is different. However, if the abstraction is done
“in” reinforcement learning, it is possible for the system to
know that the state is the same even though the used sensor
is different. That is because the outputs that are trained to
represent expected reward and appropriate actions are the
same for the same state as shown in Fig. 2(b).

In the following, the advantage of the proposed approach
is demonstrated by the simulation of this simple example.
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Fig. 3. The system architecture and signal flow. The combination of used sensor and motor set is chosen randomly at every episode.

III. SIMULATION SETUP

A. Task and Architecture

As mentioned above, there are no special techniques in
the system employed here. The system architecture and
signal flow are shown in Fig. 3. The system consists of
only one regular multi-layer neural network. Each neuron
computes weighted sum of the input signals, and then outputs
the sigmoid function of the sum. The output value ranges
from -0.5 to 0.5. There are no connections beyond one or
more layers, and the initial connection weights are small
random values. However, only the initial connection weights
to the output layer are 0.0 that make the outputs be 0.0 not
depending on the input signals before learning.

A square-shaped object with 1.0 side length is located
randomly on the square-shaped area with 5.0 side length.
There are two visual sensors, s1 and s2. The visual sensor
s1 consists of 5 × 5 = 25 visual cells, while the sensor s2

consists of 7×7 = 49 visual cells. The visual field of the two
sensors is the same with each other, and is identical to the
square-shaped area. It can always catch the object. The size
of the receptive field of each sensor cell is different between
the two sensors, and the object size is identical to the size
of one sensor cell of the sensor s1. One of the sensors is
chosen randomly at every episode. Each sensor cell outputs
the area ratio occupied by the projected object comparing
with the receptive field. For the sensor that is not chosen,
all the sensor signals are 0.0. All the sensor signals from the
both sensors are the input of the neural network. Accordingly
the network receives 25 + 49 = 74 input signals totally.

The system also has two sets of motors, m1 and m2. One
set of the two is chosen randomly at every episode and is
used to move an object during the episode. One set of motors
consists of two motors, and each motor is responsible for the

object motion in one of x and y directions. The outputs of
the neural network are divided into two parts, each of which
is corresponding to one set of motors. The popular actor-
critic architecture[11] is introduced in each part that consists
of three outputs. One of the outputs works as critic, and the
other two works as actors each of which is corresponding to
one of the motors respectively. The actual motor commands
are the sum of the actor output vector a and a random number
vector rnd as trial and error factors. The motor characters
are different between the two sets, and they are given by the
equations in Fig. 3. The velocity for each axis, vx or vy , is
limited from -1.0 to 1.0. The object cannot be moved out of
the square-shaped area so that the coordinates of the object
center always satisfies 0.5 ≤ x ≤ 4.5 and 0.5 ≤ y ≤ 4.5.
When the object center reaches the area that satisfies both
2.0 ≤ x ≤ 3.0 and 2.0 ≤ y ≤ 3.0, the system can get
a reward of 0.7 and the episode finishes. When the object
cannot reach the goal area within 100 steps, the episode
finishes with no reward. The critic that is used to generate
the training signal is also switched according to the selected
motor set. Since no penalty is given in this task, the critic
output is used after adding 0.4 to the actual output of the
network so that the critic value ranges from -0.1 to 0.9. The
discount factor is 0.96 here.

There are redundant hidden representations to realize the
output. If some hidden neurons are responsible only to the
observation vector from one sensor, and the other neurons
are responsible only to that from the other sensor as shown
in Fig. 4(a), the appropriate mapping for the combination s2-
m2 indicated by the thick rectangle cannot be obtained by the
learning of the other combinations. However, if the hidden
representations for each state are the same not depending
on the selected sensor as shown in Fig. 4(b), the mapping
for s2-m2 may be obtained by the learning of the other
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combinations. Then, in this simulation, the neural network
does not learn for the s2-m2 combination, but just does its
forward computation. By observing the performance, it is
examined whether the knowledge transfer is done or not. It is
also examined whether the representation of the upper hidden
layer acquired through reinforcement learning depends on the
selected sensor or not.

B. Learning

The training signals for the neural network are computed
as follows based on reinforcement learning[11]. The TD-error
r̂t is computed as

r̂t−1 = rt + γP (ot) − P (ot−1) (1)

where rt is the reward, P is the critic output, ot is the
observation vector and γ is a discount factor. The training
signal for the critic Ps,t−1 is computed as

Ps,t−1 = P (ot−1) + r̂t−1 = rt + γP (ot). (2)

The training signals for the actor as,t−1 are computed as

as,t−1 = a(ot−1) + r̂t−1rndt−1 (3)

where rnd is the random number vector that was added to
the actor output vector a. The neural network is trained by
regular BP (Back Propagation)[12] using the above training
signals. As mentioned, the critic value is used in the above

equations after 0.4 is added to the output of the network, and
the training signal for the critic is used after subtracting 0.4
from the above training signal.

IV. SIMULATION RESULT

Each figure in Fig. 5 shows the learning curve for each
combination of sensor and motor set. y axis indicates the
average steps to the goal. The neural network structure is
different among (a) (b) and (c) in Fig. 5. The neural network
has three hidden layers in the case of (a) and (c), while it
has only one hidden layer in the case of (b). The number of
hidden neurons is 40-20-10 in the case of (a), 40 in the case
of (b), and 40-40-40 in the case of (c). In the cases from
(a-2) to (a-4), one of the combinations of sensor and motor
set is not presented during the learning.

In Fig. 5 (a-1), the performance for the combination of s2-
m2 becomes better even though no learning is done for the
combination as mentioned. On the other hand, in Fig. 5(a-
2,3,4), the performance for the s2-m2 combination does not
become better at all even though the performance of the other
combinations becomes better. The result of the simulations in
[7] and [13] that examined the hidden representation of the
neural network through supervised learning suggested that
even though two input signal patterns are not similar with
each other, the hidden patterns corresponding to the input
patterns become close through learning when the correspond-
ing training signal patterns are similar. From this knowledge,
the above result can be explained as follows. The difference
of hidden representations due to the selected sensor becomes
small through the learning for the combinations of s1-m1 and
s2-m1 because the same output neurons are used and trained.
Then a common representation of the object location not
depending on the selected sensor is obtained. Accordingly,
by adding the learning for s1-m2 combination, the mapping
from the common representation to the output for the motor
set m2 is obtained, and the performance for s2-m2 combina-
tion becomes better without learning for the combination. In
the case of (a-2) and (a-4), the common representation not
depending on the selected sensor cannot be obtained. While,
in the case of (a-3), although the common representation
can be obtained, the mapping from the representation to the
outputs for the motor set m2 cannot be obtained because any
learning was not done for the motor set m2.

The comparison on the neural network structure suggests
that the performance for the combination s2-m2 is better
when the number of layers becomes more and the number of
hidden neurons in the higher hidden layer becomes less to
the extent that the network can learn. This is also compatible
to the simulation results in [13]. One more thing that can
be noticed easily is that in the case of the three-layer
neural network, the learning is faster than the others. It is
general that the learning is slower when the number of layers
becomes more especially when the initial weight values are
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Fig. 5. Learning curve for each combination of sensor and motor set. No learning is done for the combination of the sensor s2 and the motor set m2. It
can be seen that when the learning is done for the other three combinations, the performance becomes better for the combination s2-m2 as the progress of
the learning for the other three combinations. It can also be seen that the network structure deeply influences to the performance.

small. The learning is a little bit faster for the case of 40-
40-40 hidden neurons. It is also general that the learning
becomes faster as the number of neurons becomes more.

In order to confirm the above explanation, the representa-
tions of the upper hidden layer are observed. Some examples
are shown in Fig. 6 for the cases of (a-1) and (a-2). It can be
seen that the hidden patterns are very similar between s1 and
s2 in the case of (a-1), but in the case of (a-2), the patterns
are not so similar. Fig. 7 shows the correlation of hidden
patterns between the sensors s1 and s2. All the outputs of 10
neurons in the upper hidden layer for 81 object locations are
plotted in each figure. The x-axis indicates the output of each
neuron when the sensor s1 is used, and the y-axis indicates
the output when the sensor s2 is used.

The correlation of the hidden patterns is very strong in
the case of (a-1) and (a-3), while it is not so strong in the
other cases. In the case of (a-2), negative correlation can be
observed in some neurons such as the sixth neuron in Fig. 6
(a-2-1) and (a-2-2). In the case of (a-4), some neurons took
almost the same value not depending on the object location or
on the selected sensor. That can be seen in the three islands of
dots at the upper right area in Fig. 7 (a-4). The reason might
be that since the hidden layer has to represent the state only
for the sensor s1 in the case of (a-4), the number of hidden
neurons is more redundant than the other cases.

V. CONCLUSION

It was proposed that reward and punishment are used as
the criterion for abstraction. Based on this idea, it was also



proposed that abstraction is interpreted as an intermediate
representation in the process from sensors to motors that con-
sists of one neural network trained by reinforcement learning.
It was shown that in the task in which one combination of
sensor and motor set is chosen randomly at every episode,
even though one of the four sensor-motor combinations was
not learned, the performance for the combination became
better through the learning of the other three combinations.
However, one of the three combinations was missed, the
performance did not become better any more. It was con-
firmed that the representation of the upper hidden layer was
dependent almost only on the object location and independent
on the used sensor.
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