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ABSTRACT

It has been known that when a human moves its hand to a
target, the trajectories becomes almost a straight line from
the start point to the target. When a viscosity force field
is loaded to the hand unexpectedly, it is pulled toward the
force direction once and then goes back to the target. How-
ever, after the learning in the force field, the trajectory be-
comes a straight line again, and when the force field is re-
moved, it is pulled toward the opposite direction of the force
that was loaded to the hand[6]. This is called after-effect.

In this paper, a neural network, whose inputs are visual
sensory signals and the state of a manipulator, and whose
outputs are joint torques, was trained by reinforcement learn-
ing. The effect of the first force field exposure and after-
effect could be observed. This means that the system ob-
tains inverse dynamics of its hand and environment in the
neural network through reinforcement learning. Further,
when the neural network learned in a random force at every
trial, it became to control its hand based on the feedback
control rather than feedforward control.

1. INTRODUCTION

Hand reaching to some object is a primitive movement for
humans. It has been well investigated for the analysis of
our motion learning. It is known that the shape of the hu-
man hand reaching path is almost a straight line and the
associated speed profile is single-peaked and bell-shaped
in the case of short unconstrained horizontal movements.
There are also some exceptions in the case of long-distance
reaching[1]. In order to explain such hand trajectories as
optimization problem, “minimum jerk”,”minimum torque-
change”, “minimum motion-command-change” criteria and
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so forth have been proposed[2][1][3]. In order to control
the arm to follow the computed trajectory based on feed-
forward control, “feedback error learning” has been also
proposed[4].

On the other hand, the authors showed that a neural net-
work whose inputs are visual sensory signals and state of a
manipulator, and whose outputs are joint torques, can learn
the hand reaching movement by reinforcement learning[5].
The hand dynamics is considered and no preprocessing of
the visual sensory signals are executed. In this model, it is
not necessary to compute the trajectory explicitly on any co-
ordinates, and so the iterative computation to generate the
trajectories is not also needed. The obtained hand path is
almost a straight line and speed profile is bell-shaped, but
not as similar to the human’s as that derived from the path
planning model mentioned above. However, it can be con-
sidered that the path is obtained by the learning of whole
the process from sensors to motors without any knowledge
about the task and arm dynamics under insufficient simula-
tion settings such as low resolution of the visual sensor.

It is known that in human hand reaching movement, the
hand is pulled by the force, and the hand path is curved.
However, after some learning in the force field, the path be-
comes close to a straight line. If the force field is removed,
the path is curved to the opposite direction[6]. That is called
after-effect.

The purpose of this paper is to examine the effect of the
force field loaded to the hand when the hand reaching task
is trained by reinforcement learning. Through this, the pos-
sibility that reinforcement learning is executed in our living
things is shown. It is also shown that no explicit trajecto-
ries on any coordinates are necessary to be computed for
controlling its arm. Moreover, depending on the situation
in the learning, appropriate control can be selected between
feedforward control and feedback control only by executing
reinforcement learning in the hand reaching task.

Conventionally reinforcement learning has been thought
of a learning for motion planning, in other words, control in
wide meaning. However, the authors believe that it can be
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Figure 1: Effect of the force field in human hand reaching
task. [6]. [[[[[the copy has not been permitted yet. under
application]]]]]

the learning for whole the process from sensors to motors,
including recognition, attention, memory and so forth. By
combining it to the neural networks, whole the process can
be obtained purposively, adaptively and in harmony with-
out being divided into some functional modules. This is
expected to result in the real intelligence that fills up the
gap between humans and the present robots. This research
has an aspect of one of the process to show this ability and
the possibility that reinforcement learning is utilized for the
learning of many functions in our living things.

2. EFFECT OF FORCE FIELD
IN HUMAN HAND REACHING MOVEMENT

In the environment with unknown dynamics, the trajectory
of human reaching movement is curved at first. After the
learning of a hand reaching task, the hand path becomes
almost a straight line as shown in Fig. 1 (a). If a viscos-
ity force field, in which loaded force is varied according to
the hand speed vector, as shown in Fig. 2 is loaded to the
hand, the hand is pulled to the direction of the force field,
and the path is curved as shown in Fig. 1(b). However, af-
ter some learning in the force field, the path becomes close
to a straight line again as shown in Fig. 1(c). When the
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Figure 2: The viscosity force field loaded to the hand.

environment is restored to the normal dynamics, the trajec-
tory is curved inversely[6] as shown in Fig. 1(d). It is also
known that when the trajectory curves, the stiffness of the
hand becomes large by the simultaneous activation of the
paired muscles[7]. In other words, the trajectory error be-
comes less by making the feedback gain large.

3. ACTOR-CRITIC AND TS LEARNING

Here, actor-critic architecture[8] is employed, and imple-
mented in one layered neural network. The output neurons
are divided into one critic output and the other actor out-
puts. For the learning of the critic, TS (temporal smooth-
ing) based learning is employed[9]. It is very similar to TD
(temporal difference) learning[8] and the details can be seen
in [9]. The training signal for the critic ps and for the actor
ms are

ps(t − 1) = p(t) − Prange/Nmax[i], (1)

ms(t−1) = m(t−1)+rnd(t−1){p(t)−p(t−1)}, (2)

where p: the critic output, Prange: the value range of the
ideal critic output, here, 0.4 − (−0.4) = 0.8, m: the actor
output vector, and rnd: random vector added to m as a
trial and error factor before a robot actually moves. Nmax

is computed as

Nmax[i] =
{

N [i] ifN [i] > λNmax[i − 1]
λNmax[i − 1] otherwise.

(3)
Nmax tries to represent the maximum time steps until its
goal state, but if the present time steps is less than Nmax,
Nmax decades gradually for adaptation. The slope of the
critic is trained to be Prange/Nmax. Accordingly, the ideal
critic output changes as a straight line in TS learning, while
it changes as an exponential curve in TD learning during the
time steps with no reward.

4. SIMULATION

Here, two-link arm as shown in Fig. 3 is supposed, and the
task is to learn the hand reaching movement to the object on
the visual sensor.



4.1. Arm Dynamics

The arm dynamics is as follows that is the same as [1].

τ1 = (I1 + I2 + 2M2l1s2cosθ2 + M2(l1)2θ̈1

+(I2 + M2l1s2cosθ2)θ̈2

−M2l1s2(2θ̇1 + θ̇2)θ̇2sinθ2 + B1θ̇1 (4)

τ2 = (I2 + M2l1s2cosθ2)θ̈1 + I2θ̈2

+M2l1s2(θ̇1)2sinθ2 + B2θ̇2 (5)

where τi, Mi, li, si, Ii: torque for the joint i, mass, length,
distance between joint and center of gravity and inertia of
the link i respectively. If the joint angle 1 becomes larger
than 180 degree, the angle is fixed at 180 degree, and com-
puted the dynamics as one link. Each parameter is set as
shown in Table 1. The maximum torque is 5.0[Nm] for the
joint 1 and 3.0[Nm] for the joint 2. The differential equa-
tion is solved numerically by Runge-Kutta method with the
sampling time of 0.02 second.

Table 1: Parameters used in the dynamical arm model.

Parameter
Mi (kg)
li (m)
si (m)
Ii (kg m2)
Bi (kg m2/s)

τmax i (N m)

link2

0.2
3.0

link1

0.4
5.0

2.0
0.3
li/2

Mi * li2 / 3.0

4.2. Task Setting

The visual sensor consists of 5 × 5 = 25 sensory cells, and
the receptive field of each cell is a square without overlap-
ping. The output of the cell is the area ratio occupied by a
projected object. The size of the hand and the target is sup-
posed to be just the same as one sensory cell, and they can-
not be distinguished on the visual sensor. Each of the joint
angles and joint angular velocities is a continuous signal,
but is localized into some signals as shown in the bottom of
Fig. 3 for making the learning of non-linear mappings easy.
Here, the first joint angle that is from 0 to π/2 is divided
into 8 signals, and the second one from 0 to π is divided
into 12. Each of joint angular velocity from −π to π is di-
vided into 10. In order to examine whether the system learns
feedback control or not, the joint angles, angular velocities
and torques at one time step before are appended as inputs.
Here feedback controlled is defined to control based on the
past states and motion outputs. Totally 125 signals are the
inputs of a layered neural network.

Actor-Critic architecture[8] is implemented in a four-
layered neural network. The number of the output is three
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Figure 3: The robot hand-reaching task with a force field.

those are one for the critic and two for the actor. The out-
put function of each neuron is sigmoid function with value
range from -0.5 to 0.5. The two actor outputs are used as
the torques τ for joint 1 and joint 2 respectively after linear
transformation to the range in Table 1. The critic output is
used without any transformations. The network has 2 hid-
den layers, and the numbers of hidden neurons are 30 for
the lower layer and 10 in the upper respectively. The initial
hand and target locations are decided randomly in the visual
field at every trial. When the hand is overlapped with the
target and the hand tangential velocity is less than 0.1 [m/s],
reward 0.4 is given. When one joint angle becomes less than
0 degree or joint 1 angle becomes more than 90 degree, the
trial is stopped and the penalty -0.4 is given. Otherwise, re-
inforcement signal is 0.0. At the early phase of the learning,
The target is located close to the hand, and then the initial
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Figure 4: The difference of trajectories depending on the exposure of the force field. The start positions are the center of the
squares at four corners of visual field. The goal state is that the hand center exists in the larger square that is filled with light
gray with less than 0.1 m/s tangential velocity. The path from the upper left, lower left, upper right, lower right corner is
drawn by small filled squares, empty squares, x, and filled circle respectively.

distance to the target is made larger gradually according to
the learning performance. If the hand often fails to reach the
target, the target is moved to the hand gradually in one trial.

4.3. External Force Load

In addition to the setting in the last section, external force
was loaded to the hand. The learning are done under fol-
lowing three conditions. (1)viscosity force field as in [6]
was loaded, (2)random force within 8[N] for each of x, y
directions that was decided at every trial was loaded, and
(3)no external force was loaded. Then in the test phase, the
learning results are compared in the cases of no force field
and viscosity force field as in [6]. The reason why the ran-
dom force is loaded in the learning phase is to examine that
by experience of various force load, the system becomes to
control mainly by feedback control rather than feedforward
control based on learning of inverse dynamics of the arm
and the environment.

4.4. Results

Some example trajectories after 2,000,000 trials of learning
are shown in Fig. 4 for two cases in which external force
field is loaded or not in the test phase. The trajectories are
drawn for the cases when the initial hand location and tar-
get location are chosen among upper right, upper left, lower
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Figure 5: Profiles of the hand tangential velocity.

right and lower left. When the environment is the same be-
tween learning phase and test phase ((a) and (d)), the tra-
jectories are expected to be almost a straight line, but are
not so close to a straight line. However, comparing with
the case that the force field is loaded in one of the learning
phase and the test phase ((b) and (c)), it can be said that the
paths are closer to a straight line. When the force field was
loaded after the learning without the force field (b), the hand
sometimes did not reach the target, but the paths are curved
to the direction of the force field. When the force field was
removed after the learning in the force field (c), the paths
are curved to the other direction. The angle of the direction
that the hand was pulled in Fig. (b) and the direction in Fig.
(c), is almost 90 degree. That is the same as the result of
human’s case as shown in section 2. It can be said that the



after-effect was observed.
In the case of random force in the learning phase ((e) and

(f)), the curve of the paths is not so strong in both force field
and no force filed in the test phase. The paths are similar to
each other.

The change of the hand tangential velocities is shown in
Fig. 5 for the case of (a) and (d) in Fig. 4. In the case that
the force field was loaded in both learning and test phases,
velocity profile is not similar to bell shape.

Next, the reaching time is observed. The target and ob-
ject were located on one of the 8 × 8 = 64 lattice on the
visual sensor. Excluding the case in which the hand is reach-
ing the target before it moves, the number of successful tri-
als and failures were counted for the total 1040 combina-
tions. The failure is classified into two cases, that the joint
angle is out of the limit, and that the hand does not reach
in 4 seconds. The numbers for two simulations for the dif-
ferent sets of initial weight values in the network are added
and shown in Table 2.

Table 2: Learning results. The three numbers indicate the
number of success-out-fail respectively. “Out” means that
one of the joint angle is over the limitation. “Fail” means the
the hand cannot reach in 4 sec. The number in parenthesis
indicates the average reaching time to the target.

no force field force field

no force_field

random_force

force_field

random_force
(no past state inputs)

2071-  5-  4
(0.324sec)

1139-926- 15
(2.03sec)

1869-193- 18
(0.793sec)

2035- 38-  7
(0.467sec)

2038-  5- 37
(0.546sec)

1833-227- 20
(0.909sec)

1887-  0-193
(0.896sec)

1165-853- 62
(2.12sec)

test
learning

The average time steps are also shown in parenthesis.
When it failed to reach, the time was set to be 4.0 sec-
onds. In the both cases in which the force field is loaded
and not, the inverse dynamics is acquired only through rein-
forcement learning, and when the environment changes, it
cannot reach the target in many cases.

In the case of random force, the number of success is
not relatively small not depending on the force field loaded
to the hand in the test phase. However, if the past informa-
tion is removed from the inputs as the last row of Table 2,
it often happens that the hand cannot reach when the force
field is loaded. This indicates that the feedback control is
employed. That may be because since the random force
cannot be predicted, the feedforward control does not work,
and only feedback control is effective. Only by applying re-
inforcement learning, the system changed to control selec-
tively based on the feedback control through experiences.

5. CONCLUSION

By the combination of reinforcement learning and neural
network, the system can reach its arm to the target on the vi-
sual sensor even if the force field is loaded to the hand. The
neural network obtains the inverse dynamics of the arm and
environment, and can control based on feedforward control.
When the force field was loaded after the learning with-
out force field, the hand path curved to the direction of the
force. When the force field was removed after the learn-
ing in the force field, after-effect was observed. When the
random force was loaded at every trial, feedback control is
performed through learning. Since the hand path and veloc-
ity profile is not so similar to human’s, there are still many
things to be improved, but the authors think that the possi-
bility could be shown that the human utilizes reinforcement
learning to obtain the hand movement.
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