
Practical Recurrent Learning (PRL)
in the Discrete Time Domain

Mohamad Faizal Bin Samsudin, Takeshi Hirose and Katsunari Shibata
Department of Electrical and Electronic Engineering,
Oita University, 700 Dannoharu, Oita 870-1192 Japan

Email: shibata@cc.oita-u.ac.jp

Abstract. One of the authors has proposed a simple learning algorithm for recurrent
neural networks, which requires computational cost and memory capacity in practical
order O(n2)[1]. The algorithm was formulated in the continuous time domain, and it was
shown that a sequential NAND problem was successfully learned by the algorithm. In
this paper, the authors name the learning “Practical Recurrent Learning (PRL)”, and the
learning algorithm is simplified and converted in the discrete time domain for easy
analysis. It is shown that sequential EXOR problem and 3-bit parity problem as non
linearly-separable problems can be learned by PRL even though the learning performance
is often quite inferior to BPTT that is one of the most popular learning algorithms for
recurrent neural networks. Furthermore, the learning process is observed and the
character of PRL is shown.

Keywords: Recurrent Neural Network (RNN), Supervised Learning, Practical
Recurrent Learning (PRL), BPTT, Short-Term Memory

1 Introduction

When we think of the higher functions in humans, such as logical thinking,
conversation, and so on, it is easily noticed that memory plays an important role in the
functions. Accordingly, it is expected that the need for the RNN is going to grow
drastically in the near future as the increase of the desire to the higher functions.

Conventionally, there are two popular learning algorithms for recurrent neural
networks that have been proposed. One is BPTT (Back Propagation Through
Time)[2] and the other one is RTRL[3] (Real Time Recurrent Learning). In BPTT, all
the past states of the network are stored using O(nT) of memory where n is the
number of neurons and T is the present time step, and the learning is done by tracing
back to the past using the memory. The order of the computational cost is O(n2T). The
traced-back time step is often truncated at a constant number when T becomes large,
but it is difficult to know the sufficient number of steps. On the other hand, in RTRL,
the influence of each connection weight to the output of each neuron is kept in O(n3)
of memory, and the order of the computation of the influence is as large as O(n4).
BPTT is not practical in the meaning that the learning should be done with tracing
back to the past. Even though the special hardware is developed, iteration of learning
for the traceback is necessary. RTRL is not practical in the meaning that the required
order O(n3) in the memory capacity and O(n4) in the computational cost are larger
than O(n2) that is the order of the number of connections in a neural network. Even

though each connection has some memory, a memory on the connection should have
O(n) size, that means that the size of each memory should be larger according to the
size of the neural network.

S. Hochreiter and J. Schmidhuber have proposed a special network architecture
that has some memory cells. In each memory cell, there is a linear unit with a fixed
weight self-connection that enables constant, non-vanishing error flow within the
memory cell[4]. They used a variant RTRL and only O(n2) of computational cost is
required. However, special structure is necessary and it cannot be applied to the
general recurrent neural networks.

Therefore, a practical learning algorithm for the general recurrent neural networks
that need O(n2) or less memory and O(n2) or less computational cost is strongly
required. Then Practical Recurrent Learning (PRL) was proposed in the continuous
time domain. In this paper, PRL is simplified and converted in the discrete time
domain for easy analysis, and the learning performance is compared to BPTT.

2 Practical Recurrent Learning (PRL)

Here, PRL is explained using an Elman-type recurrent neural network as shown in
Fig.1.

Fig.1 An Elman-type recurrent neural network

2.1 PRL in the continuous time domain[1]

This section describes roughly about PRL in the continuous time domain proposed
in [4]. The forward calculation is the same as the conventional neural network that
means that each hidden or output neurons calculate the weighted sum of the inputs
and then non-linear function f is applied to get the output. Here, the sigmoid function
whose value range is from -0.5 to 0.5 is used. In the output layer, the error signal is
calculated by

)()()3()3(txtTr jjj (1)

where Tr : training signal, xj

(3):output of the output unit. Differing from the regular BP,
the derivative of the output function f’j

(3) is not included. As well as the regular BP,
the error signal in the hidden layer δi

(2) is calculated from the δj
(3) in the upper layer as

described by the following equations.

Input layer
(1st layer)

Output layer
(3rd layer)

Hidden layer
(2nd layer)

...........

...........

j
jjii tv)()3()2((2)

)()(')()3()3()3(tx
dt
d

vtSftwv
dt
d

jjijjiji (3)

where wji

(3): connection weight (ith hidden unit - jth output unit) , Sj
(3) : the net value

of the jth neuron in the output layer. f’ is included in this equation on behalf that f’
disappears in Eq. (1) in order to use f’ when the output changed.

Then, in order to modify the value of weight without tracing back to the past, it is
considered that the following information should be held.

(a) the latest outputs of pre-synaptic neurons,
(b) the outputs of pre-synaptic neuron that changes recently among all the inputs

to the post-synaptic neuron,
 (c) the outputs of the pre-synaptic neuron that caused the change of the post-

synaptic neuron’s output.
Corresponding to the (a),(b),(c), three variables p(t), q(t), r(t) that hold the past
information in various ways are introduced and they are always modified according to
the following differential equations.

)(')()()(tSftxtptp
dt
d

jijijij (4)

i

ijijiji tx
dt
d

tqtSftxtq
dt
d

)()()(')()((5)

)()()(')()(tx
dt
d

trtSftxtr
dt
d

jjijiji (6)

Using the three variables, each connection weight is modified. The following

equation is an example but the details can be seen in [1].

)()()()()(ttrtqtptdw jjijijiji (7)

Among the three variables, rji(t) is considered to be a particularly important

variable with respect to the learning of a problem that needs the past information
before a long time lag. Fig.2 shows an example of the temporal change of the variable
rji(t) according to the input signal xi(t) and the output signal xj(t). As shown in Fig.2, it
is the important character that rji(t) holds the information about the output of the pre-
synaptic neuron that caused the change of the post-synaptic neuron’s output. This
variable ignored the inputs while the output did not change. Accordingly the variable
is expected to keep past and important information without tracing back to the past.

Fig.2 An example of the variable rji(t) transition. From equation (11), variable rji(t)
integrates the value of input xi(t) when the output xj(t) changes, and holds the
information of the previous state when the output does not change.

2.2 PRL in the discrete time domain

In order to make the analysis of PRL learning easy, PRL learning method in the

discrete time domain is introduced here. The method of learning is similar to the
conventional Back Propagation method in the meaning that each connection weight
are modified according to the product of the propagated error signal δ of the post-
synaptic(upper) neuron and the signal that represents the output xi of the pre-
synaptic(lower) neuron. Furthermore, to make the learning process become simple,
conventional BP method is used for the learning of the connection weights between
the hidden layer and the output layer and PRL learning method is used only between
the input layer and the hidden layer.
In the output layer, the error signal δj

(3) is calculated as

)(')()(
)(

)(
)(

)()3()3(
)3(

)3(

)3()3(
)3(tSftxtTr

S

x

tx
tE

tS
tE

jjj
j

j

jj
j . (8)

Same as the conventional Back Propagation method, the modification of connection
weights are calculated by

)2()3()3(

ijji xw . (9)

Each neuron in the hidden layer is trained by PRL and signal δj
(2) is calculated as

k
kjkj tw)()3()3()2(. (10)

From the equation above, f’(t) is not multiplied as the conventional BP method

because f’(t) is included in the variable rji(t) as shown in equation (11). Considering

50

0.5

0

0

0.5

1.0

0.2

100

100 50

Input xi(t)

Output xj(t)

100

0.1

0
50

Variable rji(t)

Output
value

Input
value

 Times

 Times

 Times

Value of
variable rji(t)

1.0

that variable rji(t) does not changed when the output does not changed, and integrates
the input’s value when the output changes, it is calculated as

)()(')()(1)1()()2()2()2()2(txtSftxtxtrtr jjijjiji (11)

where)1()()(txtxtx jjj . Then, the modification of each connection weight in
the hidden layer is calculated using only the variable rji by

)()()2()2(trtw jijji . (12)

3 Simulation of EXOR and 3-bit parity problems

3.1 Simulation of EXOR problem

From the previous work[1], it was shown that a sequential NAND problem could
be learned by PRL, but a sequential EXOR problem could not be learned. Here,
sequential EXOR problem in a fix pattern order was tried to be learned by PRL in the
discrete time domain. At first, the sequential EXOR logic function is explained.
EXOR problem is a logical operation on two operands that results in a logical value of
1 if and only if exactly one of the operands has a value of 1 and the other has a value
of 0. The network architecture used in this paper is the same as shown in Fig.1
besides it contains 1 output, 20 hidden units and 3 input signals. The input 1 is
considered as a signal to distinguish the starting time of a pattern presentation and it is
always 1 at t=0. As shown in Table 1, the value of 0 or 1 is entered to the input 2 at
t=5 and the input 3 at t=15. At the other times, the signal is always 0. The training
signal is given when t=time_lag (from the starting time to the time when the training
signal was given) and the time_lag is set to 20 unless mentioned particularly.
Parameter setup is shown in Table 2. As shown in Table 2, we used value 4.0 for
initial connection weight for self-feedback connection to prevent the propagated error
value from diverging or vanishing in BPTT method considering that the maximum
derivative of output function is 0.25. All the valuables r are reset to 0 at t=0.

Table 1 The timing of inputs and training signal in the learning of one pattern

Time, t 0 1~4 5 6~14 15 16~time_lag time_lag
Input 1 1 0 0 0 0 0
Input 2 0 0 0 or 1 0 0 0
Input 3 0 0 0 0 0 or 1 0

Training
signal was

given

Table 2 Parameter setup

Initial weight value for self-feedback 4.0
Initial weight value for the other feedback 0.0

Initial weight value (input layer-hidden layer) Random number (1.0~1.0)
Initial weight value (hidden layer-output layer) 0.0

Termination condition 30000 iteration(1 pattern for 1 iteration)

3.1.1 Simulation result

Table 3 shows the simulation result when EXOR problems was tried. Successful

learning is defined as the state that the difference from the difference from the
training signal is less than 0.1 for the last 4 iterations before the end of the learning.

From the simulation results, it is shown that sequential EXOR problem as a non
linearly-separable problem can be learned by PRL successfully as well as the case of
BPTT. Moreover, we recognized that the learning performance for both learning
methods has been improved when the learning rate for the feedback connections are
smaller than the learning rate for the other connections in the network.

Table 3 Simulation result when the learning rates on the network were varied.

Learning rate Learning rate for feedback

connections
Success Rate

PRL (/100times)
Success Rate

BPTT (/100times)
1.0 1 6
0.5 12 25
0.1 96 95

0.05 100 100

1.0

0.01 100 100
0.5 42 27
0.1 94 92

0.05 100 98

0.5

0.01 100 100
0.1 94 84

0.05 94 82
0.1

0.01 60 75

In addition, Table 4 summarizes the result of comparison for both methods when
we exceeded time_lag to 100, but the timing of inputs is the same as shown in Table.1.
In terms of learning ability, the conventional BPTT performs better than PRL even
though the time for training by PRL is far smaller than BPTT.

Table 4 Simulation result when time lag is exceeded to 100

Time Lag Success Rate
PRL (/100times)

Success Rate
BPTT (/100times)

Training time
PRL (sec)

Training time
BPTT(sec)

20 100 100 4 8
40 90 100 9 19
60 79 100 13 33
80 70 100 17 49
100 68 100 22 69

 The sequential EXOR problem as a non linearly-separable problem can be learned
successfully to some extent by the PRL in the discrete time domain rather than
continuous counterpart. The reason of failure for the learning in the continuous time
domain is not clear, but maybe the difficulty of setting the training signal. The value
of the training signal was not given at a moment, but a shape of training signal for
some duration was given in [1].

3.2 Simulation of 3-bit parity problems

This section presents the learning performances of the PRL in comparison to the
BPTT in a sequential 3-bit parity problem in the random pattern order. In the 3-bit
parity problem, the training signal is -0.4 when the number of signals whose value is 1
in 3 given inputs except for the input 1 is even, and the training signal is 0.4 when the
number is odd. It is considered that the task is more difficult than EXOR because the
number of inputs is larger and it might be difficult for the variable rji to keep the past
information. We used the same network architecture (refer to Fig.1), but there are 4
input signals that are 1 input as a starter signal and 3 inputs that is used to calculate
the parity signal. The input 1 is entered when t=0 and the value is always 1. Time_lag
is set to 20 and the input 2, 3 and 4 are set to enter at t=5, 10 and 15 respectively and
the value is chosen randomly from 0 and 1. Parameter setup was the same as in the
previous section, but the termination condition is that the state with the squared error
is less than 10-3 continues for 100 pattern of learning. Furthermore, the random
pattern order is employed here to eliminate the possibility of memorizing the pattern
order during the learning

3.2.1 Simulation Results

The result of simulation for the 3-bit parity problem in random pattern order is
shown in Table 5. Even though no traceback is done in PRL learning, this 3-bit parity
problem is learned by PRL to some extent. However, the BPTT outperforms PRL for
success rates and average number of iterations.

Table 5 The comparison result of learning success rate and average number of iterations.

Random pattern order

Learning success rate
(/100times)

Average number of iterations Learning rate Learning rate for
feedback

connections PRL BPTT PRL BPTT
0.001 75 100 133003 17494
0.003 81 100 119909 11393
0.01 62 100 107270 7929
0.03 26 96 119020 7710

 1

0.1 30 1 108248 6033

Here, we focused on the big difference on the average number of iterations to find

the reason of inferiority. Firstly, the transition of the output neuron’s output just after
the learning process begins is observed as shown in Fig.3 for both methods. In order
to make a comparison, the initial values of connection weights and pattern order are
same for the both methods. Fig.3 shows that there is a big difference in the transition
of output when the value of input 2 is 1 between both methods. The output seemed to
increase drastically due to the presenting of the input 2 in the case of BPTT, but in the
case of PRL, little change of the output is seen despite the presence of input 2. For
example, the transition of the output in the case of pattern P5 and pattern P4 where a
circle is put in Fig.3 show the difference between both methods.

-0.1

-0.05

0

0.05

0.1
0 21 42 63 84 105 126 147 168 189 210

Fig.3. The transition of output in PRL and BPTT methods. The horizontal axis indicates time
and the vertical axis indicates output’s value. P3 indicates Pattern 3 for example.

Fig.4 shows the connection weights from hidden neurons to the output neuron and

the output of each hidden neuron when input 2 is 1 at t=5 in the case of pattern P5.
The initial value of connection weights from hidden neuron to output is set to 0. As
shown in Fig.4, the sign of the connection weight between the hidden 20 and the
output neuron is positive in the case of PRL while it is negative in the case of BPTT.
As a result, the output is almost the same in the case of PRL while increases in BPTT.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20

PRL

BPTT

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20

PRL

BPTT

Fig.4. Connection weight from the hidden layer to the output layer and the output of hidden

neurons when t=5.

Then, the change of the connection weight from input 1, 2, 3 and 4 to hidden 20 is

observed. As shown in Fig.5, it is noticed that the transition of connection weights
from input 1, 2, 3 and 4 to hidden 20 in the case of PRL is far smaller compared to the
case of BPTT. Considering that the sign of the connection weight from hidden 20 to
output are opposite between both methods, it is not a problem that the change of
connection weights from the input 1 to the hidden 20 in PRL is also going to the
opposite direction of the case in BPTT.

(PRL)

(BPTT)

Number of hidden neurons

Pattern

O
ut

pu
t

P6 P5 P1 P5 P3 P6 P4 P5 P6 P3
(1,1,0) (0,1,1) (1,1,0) (1,0,1) (1,0,0) (1,0,1) (1,0,1) (0,0,1) (1,1,0) (0,1,1)

Number of hidden neurons

C
on

ne
ct

io
n

W
ei

gh
t

H
id

de
n

ne
ur

on
’s

 o
ut

pu
t

Time

 Then, the transition of variable r in one cycle for the pattern P5 is shown in Fig.6.
The values are so small, but as expected, they changed at the time when the
corresponding input is 1. Even though the values decreased a little bit when another
input exists, they keep the information until the end phase of the learning process.
 In order to compensate the small variable r and to promote the change of the

connection weights from input 1, 2, 3, and 4 to hidden neurons, the learning rate for
the connection is raised up. The result of simulation is shown in Table 6.

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

0 100 200 300 400 500 600
-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

0 100 200 300 400 500 600

0.8

0.85

0.9

0.95

1

1.05

1.1

0 100 200 300 400 500 600

0.8

0.85

0.9

0.95

1

1.05

1.1

0 100 200 300 400 500 600

 Fig.5. The change of the connection weight from input 1, 2, 3, and 4 to hidden20 for both

methods at the early phase of learning process.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20

Fig.6. The value of variable r from input 1, 2, 3, and 4 to hidden 20 in the case of P5

C
on

ne
ct

io
n

W
ei

gh
t

C
on

ne
ct

io
n

W
ei

gh
t

C
on

ne
ct

io
n

W
ei

gh
t

C
on

ne
ct

io
n

W
ei

gh
t

Input1-Hidden20 Input2 - Hidden20

Input3 – Hidden20 Input4 – Hidden20

BPTT

BPTT

BPTT

BPTT

PRL
PRL

PRL

PRL

Iteration

Iteration Iteration

Iteration

r20,4

r20,2

r20,1

r20,3

Time

V
al

ue
 o

f v
ar

ia
bl

e
r

Table 6 The comparison result of learning success rate and average number of iteration

Learning success rate

(/100times)
Average number of

iterations
Learning
rate

Learning rate
between input

1, 2, 3, 4 to
hidden neurons

Learning rate
for feedback
connections PRL BPTT PRL BPTT

0.001 53 100 110107 22530
0.003 59 100 96847 12943
0.01 58 100 83112 7360
0.03 47 100 86625 5720

 1 3

0.1 50 6 87693 4670

As shown in Table 6, even though the learning rate of input 1, 2, 3, and 4 to hidden

neurons is set to be higher, BPTT still outperforms PRL in the viewpoints of both
success rates and average number of iterations. Table 6 shows the characteristic of
BPTT where the learning will become more successful when the learning rate is set to
be small. However, the PRL does not have the same characteristic as BPTT because
the learning success rate for PRL does not depend on the learning rate for the
feedback connections. More experiments and analysis is required to examine whether
the learning performance of the practical recurrent learning can be improved or not.

Conclusion

By formulating PRL learning method in the discrete time domain, it could be
shown that sequential EXOR problem and 3-bit parity problem as non linearly-
separable problem could be learned by PRL even thought PRL is practical as opposed
to BPTT and RTRL with respect O(n2) of memory and O(n2) of computational cost.
However the learning performance of PRL is inferior to BPTT. A big difference is
seen in the weight transition between PRL and BPTT even though the variable r
keeps the past information as expected. More additional analysis and experiment is
needed to develop and improve the performance of this learning method.

Acknowledgment

A part of this research was supported by JSPS Grant in-Aid for Scientific Research
#15300064 and #19300070.

References
[1] Katsunari Shibata, Yoichi Okabe, Koji Ito, “Simple Learning Algorithm for Recurrent

Networks to Realize Short-Term Memories”, Proc. of IJCNN(Int’l Joint Conf. on Neural
Network)’98, pp.2367-2372(1998).

[2] Rumelhart D.E., Hinton G.E. and Williams R.J.: "Learning internal representations by
errorpropagating", Parallel Distributed Processing, Vol. 1, MIT Press, pp.318-362 (1986)

[3] Williams, R. J. and Zipser, D. , “A learning algorithm for continually running fully
recurrent neural network”, Neural Computation, Vol.1, pp.270-280(1989)

[4] Sepp Hochreiter, Jurgen Schimidhuber, “Long Short Term Memory” Neural Computation,
Vol 9, pp.1735-1780(1997)

