
Practical Recurrent Learning (PRL) 
in the Discrete Time Domain 

Mohamad Faizal Bin Samsudin, Takeshi Hirose and Katsunari Shibata 
Department of Electrical and Electronic Engineering, 
Oita University, 700 Dannoharu, Oita 870-1192 Japan 

Email: shibata@cc.oita-u.ac.jp 
 

Abstract. One of the authors has proposed a simple learning algorithm for recurrent 
neural networks, which requires computational cost and memory capacity in practical 
order O(n2)[1]. The algorithm was formulated in the continuous time domain, and it was 
shown that a sequential NAND problem was successfully learned by the algorithm. In 
this paper, the authors name the learning “Practical Recurrent Learning (PRL)”, and the 
learning algorithm is simplified and converted in the discrete time domain for easy 
analysis. It is shown that sequential EXOR problem and 3-bit parity problem as non 
linearly-separable problems can be learned by PRL even though the learning performance 
is often quite inferior to BPTT that is one of the most popular learning algorithms for 
recurrent neural networks. Furthermore, the learning process is observed and the 
character of PRL is shown. 
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1   Introduction 

When we think of the higher functions in humans, such as logical thinking, 
conversation, and so on, it is easily noticed that memory plays an important role in the 
functions. Accordingly, it is expected that the need for the RNN is going to grow 
drastically in the near future as the increase of the desire to the higher functions.  

Conventionally, there are two popular learning algorithms for recurrent neural 
networks that have been proposed. One is BPTT (Back Propagation Through 
Time)[2] and the other one is RTRL[3] (Real Time Recurrent Learning). In BPTT, all 
the past states of the network are stored using O(nT) of memory where n is the 
number of neurons and T is the present time step, and the learning is done by tracing 
back to the past using the memory. The order of the computational cost is O(n2T). The 
traced-back time step is often truncated at a constant number when T becomes large, 
but it is difficult to know the sufficient number of steps. On the other hand, in RTRL, 
the influence of each connection weight to the output of each neuron is kept in O(n3) 
of memory, and the order of the computation of the influence is as large as O(n4). 
BPTT is not practical in the meaning that the learning should be done with tracing 
back to the past. Even though the special hardware is developed, iteration of learning 
for the traceback is necessary. RTRL is not practical in the meaning that the required 
order O(n3) in the memory capacity and O(n4) in the computational cost are larger 
than O(n2) that is the order of the number of connections in a neural network. Even 



 

though each connection has some memory, a memory on the connection should have 
O(n) size, that means that the size of each memory should be larger according to the 
size of the neural network.  

S. Hochreiter and J. Schmidhuber have proposed a special network architecture 
that has some memory cells. In each memory cell, there is a linear unit with a fixed 
weight self-connection that enables constant, non-vanishing error flow within the 
memory cell[4]. They used a variant RTRL and only O(n2) of computational cost is 
required. However, special structure is necessary and it cannot be applied to the 
general recurrent neural networks. 

Therefore, a practical learning algorithm for the general recurrent neural networks 
that need O(n2) or less memory and O(n2) or less computational cost is strongly 
required. Then Practical Recurrent Learning (PRL) was proposed in the continuous 
time domain. In this paper, PRL is simplified and converted in the discrete time 
domain for easy analysis, and the learning performance is compared to BPTT. 

2   Practical Recurrent Learning (PRL) 

Here, PRL is explained using an Elman-type recurrent neural network as shown in 
Fig.1. 
 

 
 

Fig.1 An Elman-type recurrent neural network 
 

2.1   PRL in the continuous time domain[1] 

This section describes roughly about PRL in the continuous time domain proposed 
in [4]. The forward calculation is the same as the conventional neural network that     
means that each hidden or output neurons calculate the weighted sum of the inputs 
and then non-linear function f is applied to get the output. Here, the sigmoid function 
whose value range is from -0.5 to 0.5 is used. In the output layer, the error signal is 
calculated by  
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where Tr : training signal, xj

(3):output of the output unit. Differing from the regular BP, 
the derivative of the output function f’j

(3) is not included. As well as the regular BP, 
the error signal in the hidden layer δi

(2) is calculated from the δj
(3) in the upper layer as 

described by the following equations. 
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where wji

(3): connection weight (ith hidden unit - jth output unit) , Sj
(3) : the net value 

of the jth neuron in the output layer. f’ is included in this equation on behalf that f’ 
disappears in Eq. (1) in order to use f’ when the output changed. 

Then, in order to modify the value of weight without tracing back to the past, it is 
considered that the following information should be held. 

(a) the latest outputs of pre-synaptic neurons, 
(b) the outputs of pre-synaptic neuron that changes recently among all the inputs 

to the post-synaptic neuron, 
  (c) the outputs of the pre-synaptic neuron that caused the change of the post-

synaptic neuron’s output. 
Corresponding to the (a),(b),(c), three variables p(t), q(t), r(t) that hold the past 
information in various ways are introduced and they are always modified according to 
the following differential equations. 
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Using the three variables, each connection weight is modified. The following 

equation is an example but the details can be seen in [1]. 
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Among the three variables, rji(t) is considered to be a particularly important 

variable with respect to the learning of a problem that needs the past information 
before a long time lag. Fig.2 shows an example of the temporal change of the variable 
rji(t) according to the input signal xi(t) and the output signal xj(t). As shown in Fig.2, it 
is the important character that rji(t) holds the information about the output of the pre-
synaptic neuron that caused the change of the post-synaptic neuron’s output. This 
variable ignored the inputs while the output did not change. Accordingly the variable 
is expected to keep past and important information without tracing back to the past.  
 
 



 

 
 

 
 

 
 

Fig.2 An example of the variable rji(t) transition. From equation (11), variable rji(t) 
integrates the value of input xi(t) when the output xj(t) changes, and holds the 
information of the previous state when the output does not change. 

 
2.2   PRL in the discrete time domain 

 
In order to make the analysis of PRL learning easy, PRL learning method in the 

discrete time domain is introduced here. The method of learning is similar to the 
conventional Back Propagation method in the meaning that each connection weight 
are modified according to the product of the propagated error signal δ of the post-
synaptic(upper) neuron and the signal that represents the output xi of the pre-
synaptic(lower) neuron. Furthermore, to make the learning process become simple, 
conventional BP method is used for the learning of the connection weights between 
the hidden layer and the output layer and PRL learning method is used only between 
the input layer and the hidden layer. 
In the output layer, the error signal δj

(3) is calculated as  
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Same as the conventional Back Propagation method, the modification of connection 
weights are calculated by  
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Each neuron in the hidden layer is trained by PRL and signal δj
(2) is calculated as  
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From the equation above, f’(t) is not multiplied as the conventional BP method 

because f’(t) is included in the variable rji(t) as shown in equation (11). Considering 
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that variable rji(t) does not changed when the output does not changed, and integrates 
the input’s value when the output changes, it is calculated as 
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where )1()()( txtxtx jjj . Then, the modification of each connection weight in 
the hidden layer is calculated using only the variable rji by 
 

)()( )2()2( trtw jijji .       (12) 
 
3  Simulation of EXOR and 3-bit parity problems 
 
3.1  Simulation of EXOR problem 
 

From the previous work[1], it was shown that a sequential NAND problem could 
be learned by PRL, but a sequential EXOR problem could not be learned. Here, 
sequential EXOR problem in a fix pattern order was tried to be learned by PRL in the 
discrete time domain. At first, the sequential EXOR logic function is explained. 
EXOR problem is a logical operation on two operands that results in a logical value of 
1 if and only if exactly one of the operands has a value of 1 and the other has a value 
of 0. The network architecture used in this paper is the same as shown in Fig.1 
besides it contains 1 output, 20 hidden units and 3 input signals. The input 1 is 
considered as a signal to distinguish the starting time of a pattern presentation and it is 
always 1 at t=0. As shown in Table 1, the value of 0 or 1 is entered to the input 2 at 
t=5 and the input 3 at t=15. At the other times, the signal is always 0. The training 
signal is given when t=time_lag (from the starting time to the time when the training 
signal was given) and the time_lag is set to 20 unless mentioned particularly. 
Parameter setup is shown in Table 2. As shown in Table 2, we used value 4.0 for 
initial connection weight for self-feedback connection to prevent the propagated error 
value from diverging or vanishing in BPTT method considering that the maximum 
derivative of output function is 0.25. All the valuables r are reset to 0 at t=0. 

 
Table 1  The timing of inputs and training signal in the learning of one pattern 

 
Time, t 0 1~4 5 6~14 15 16~time_lag time_lag 
Input 1 1 0 0 0 0 0 
Input 2 0 0 0 or 1 0 0 0 
Input 3 0 0 0 0 0 or 1 0 

Training 
signal was 

given 
 

Table 2  Parameter setup 
 

Initial weight value for self-feedback 4.0 
Initial weight value for the other feedback 0.0 

Initial weight value (input layer-hidden layer) Random number (1.0~1.0) 
Initial weight value (hidden layer-output layer) 0.0 

Termination condition 30000 iteration(1 pattern for 1 iteration) 



 

3.1.1 Simulation result 
  
Table 3 shows the simulation result when EXOR problems was tried. Successful 

learning is defined as the state that the difference from the difference from the 
training signal is less than 0.1 for the last 4 iterations before the end of the learning.  

From the simulation results, it is shown that sequential EXOR problem as a non 
linearly-separable problem can be learned by PRL successfully as well as the case of 
BPTT. Moreover, we recognized that the learning performance for both learning 
methods has been improved when the learning rate for the feedback connections are 
smaller than the learning rate for the other connections in the network.  

 
Table 3  Simulation result when the learning rates on the network were varied. 

  
Learning rate Learning rate for feedback 

connections 
Success Rate 

PRL (/100times) 
Success Rate           

BPTT (/100times)    
1.0 1 6 
0.5 12 25 
0.1 96 95 

0.05 100 100 

1.0 

0.01 100 100 
0.5 42 27 
0.1 94 92 

0.05 100 98 

0.5 

0.01 100 100 
0.1 94 84 

0.05 94 82 
0.1 

0.01 60 75 
 

In addition, Table 4 summarizes the result of comparison for both methods when 
we exceeded time_lag to 100, but the timing of inputs is the same as shown in Table.1. 
In terms of learning ability, the conventional BPTT performs better than PRL even 
though the time for training by PRL is far smaller than BPTT. 
 

Table 4  Simulation result when time lag is exceeded to 100 
 

Time Lag Success Rate 
PRL (/100times) 

Success Rate           
BPTT (/100times) 

Training time 
PRL (sec) 

Training time 
BPTT(sec) 

20 100 100 4 8 
40 90 100 9 19 
60 79 100 13 33 
80 70 100 17 49 
100 68 100 22 69 

 
 The sequential EXOR problem as a non linearly-separable problem can be learned 
successfully to some extent by the PRL in the discrete time domain rather than 
continuous counterpart. The reason of failure for the learning in the continuous time 
domain is not clear, but maybe the difficulty of setting the training signal. The value 
of the training signal was not given at a moment, but a shape of training signal for 
some duration was given in [1]. 
 
 



 

3.2 Simulation of 3-bit parity problems 
 

This section presents the learning performances of the PRL in comparison to the 
BPTT in a sequential 3-bit parity problem in the random pattern order. In the 3-bit 
parity problem, the training signal is -0.4 when the number of signals whose value is 1 
in 3 given inputs except for the input 1 is even, and the training signal is 0.4 when the 
number is odd. It is considered that the task is more difficult than EXOR because the 
number of inputs is larger and it might be difficult for the variable rji to keep the past 
information. We used the same network architecture (refer to Fig.1), but there are 4 
input signals that are 1 input as a starter signal and 3 inputs that is used to calculate 
the parity signal. The input 1 is entered when t=0 and the value is always 1. Time_lag 
is set to 20 and the input 2, 3 and 4 are set to enter at t=5, 10 and 15 respectively and 
the value is chosen randomly from 0 and 1. Parameter setup was the same as in the 
previous section, but the termination condition is that the state with the squared error 
is less than 10-3 continues for 100 pattern of learning. Furthermore, the random 
pattern order is employed here to eliminate the possibility of memorizing the pattern 
order during the learning  
 
3.2.1 Simulation Results  
 

The result of simulation for the 3-bit parity problem in random pattern order is 
shown in Table 5. Even though no traceback is done in PRL learning, this 3-bit parity 
problem is learned by PRL to some extent. However, the BPTT outperforms PRL for 
success rates and average number of iterations. 

 
Table 5 The comparison result of learning success rate and average number of iterations. 

 
Random pattern order 

Learning success rate 
(/100times) 

Average number of iterations Learning rate Learning rate for 
feedback 

connections PRL BPTT PRL BPTT 
0.001 75 100 133003 17494 
0.003 81 100 119909 11393 
0.01 62 100 107270 7929 
0.03 26 96 119020 7710 

   1 

0.1 30 1 108248 6033 
 
Here, we focused on the big difference on the average number of iterations to find 

the reason of inferiority. Firstly, the transition of the output neuron’s output just after 
the learning process begins is observed as shown in Fig.3 for both methods. In order 
to make a comparison, the initial values of connection weights and pattern order are 
same for the both methods. Fig.3 shows that there is a big difference in the transition 
of output when the value of input 2 is 1 between both methods. The output seemed to 
increase drastically due to the presenting of the input 2 in the case of BPTT, but in the 
case of PRL, little change of the output is seen despite the presence of input 2. For 
example, the transition of the output in the case of pattern P5 and pattern P4 where a 
circle is put in Fig.3 show the difference between both methods. 
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Fig.3. The transition of output in PRL and BPTT methods. The horizontal axis indicates time 
and the vertical axis indicates output’s value. P3 indicates Pattern 3 for example. 

 
Fig.4 shows the connection weights from hidden neurons to the output neuron and 

the output of each hidden neuron when input 2 is 1 at t=5 in the case of pattern P5. 
The initial value of connection weights from hidden neuron to output is set to 0. As 
shown in Fig.4, the sign of the connection weight between the hidden 20 and the 
output neuron is positive in the case of PRL while it is negative in the case of BPTT. 
As a result, the output is almost the same in the case of PRL while increases in BPTT. 
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Fig.4. Connection weight from the hidden layer to the output layer and the output of hidden 

neurons when t=5. 
 
Then, the change of the connection weight from input 1, 2, 3 and 4 to hidden 20 is 

observed. As shown in Fig.5, it is noticed that the transition of connection weights 
from input 1, 2, 3 and 4 to hidden 20 in the case of PRL is far smaller compared to the 
case of BPTT. Considering that the sign of the connection weight from hidden 20 to 
output are opposite between both methods, it is not a problem that the change of 
connection weights from the input 1 to the hidden 20 in PRL is also going to the 
opposite direction of the case in BPTT. 
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 Then, the transition of variable r in one cycle for the pattern P5 is shown in Fig.6. 
The values are so small, but as expected, they changed at the time when the 
corresponding input is 1. Even though the values decreased a little bit when another 
input exists, they keep the information until the end phase of the learning process.  
 In order to compensate the small variable r and to promote the change of the 

connection weights from input 1, 2, 3, and 4 to hidden neurons, the learning rate for 
the connection is raised up. The result of simulation is shown in Table 6.  
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 Fig.5. The change of the connection weight from input 1, 2, 3, and 4 to hidden20 for both 

methods at the early phase of learning process. 
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Fig.6. The value of variable r from input 1, 2, 3, and 4 to hidden 20 in the case of P5 
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Table 6 The comparison result of learning success rate and average number of iteration 

 
Learning success rate 

(/100times) 
Average number of 

iterations 
Learning 
rate 

Learning rate 
between input 

1, 2, 3, 4 to 
hidden neurons 

Learning rate 
for feedback 
connections PRL BPTT PRL BPTT 

0.001 53 100 110107 22530 
0.003 59 100 96847 12943 
0.01 58 100 83112 7360 
0.03 47 100 86625 5720 

   1 3 

0.1 50 6 87693 4670 
 
As shown in Table 6, even though the learning rate of input 1, 2, 3, and 4 to hidden 

neurons is set to be higher, BPTT still outperforms PRL in the viewpoints of both 
success rates and average number of iterations. Table 6 shows the characteristic of 
BPTT where the learning will become more successful when the learning rate is set to 
be small. However, the PRL does not have the same characteristic as BPTT because 
the learning success rate for PRL does not depend on the learning rate for the 
feedback connections. More experiments and analysis is required to examine whether 
the learning performance of the practical recurrent learning can be improved or not. 
 

Conclusion 
 

By formulating PRL learning method in the discrete time domain, it could be 
shown that sequential EXOR problem and 3-bit parity problem as non linearly-
separable problem could be learned by PRL even thought PRL is practical as opposed 
to BPTT and RTRL with respect O(n2) of memory and O(n2) of computational cost. 
However the learning performance of PRL is inferior to BPTT. A big difference is 
seen in the weight transition between PRL and BPTT even though the variable r   
keeps the past information as expected. More additional analysis and experiment is 
needed to develop and improve the performance of this learning method. 
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