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Abstract. Practical Recurrent Learning (PRL) has been proposed as a
simple learning algorithm for recurrent neural networks[1][2]. This algo-
rithm enables learning with practical order O(n2) of memory capacity
and computational cost, which cannot be realized by conventional Back
Propagation Through Time (BPTT) or Real Time Recurrent Learning
(RTRL). It was shown in the previous work[1] that 3-bit parity problem
could be learned successfully by PRL, but the learning performance was
quite inferior to BPTT. In this paper, a simple calculation is introduced
to prevent monotonous oscillations from being biased to the saturation
range of the sigmoid function during learning. It is shown that the learn-
ing performance of the PRL method can be improved in the 3-bit parity
problem. Finally, this improved PRL is applied to a scanned digit pat-
tern classification task for which the results are inferior but comparable
to the conventional BPTT.

1 Introduction

The significance of recurrent neural networks (RNNs) is expected to grow more
and more hereafter for developing higher functions due to its ability of purpo-
sive learning to memorize information or events that have occurred earlier in
a sequence. Currently, there are two popular learning algorithms for recurrent
neural networks, BPTT[3] and RTRL[4], that have been widely used in many ap-
plication areas. However, the critical drawback of the conventional algorithms is
that they suffer from the necessity of large memory capacity and computational
cost.

BPTT requires O(n2T ), order of computational cost and O(nT ), order of
memory capacity where n is the number of nodes and T is the number of steps
for tracing back to the past. That means the past T states of the neural network
have to be stored and the learning is done by using them. However, if T is small,
it is worried that sufficient learning according to the past state cannot be done.
On the other hand, RTRL needs as large as O(n3) for memory capacity, and
O(n4) for computational cost, in order to modify each connection weight without
tracing back to the past. Using RTRL in a large scale network is impractical
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because of the explosion in necessary memory capacity and computational cost.
So far, many researches such as [5] have been done based on BPTT and RTRL.

S. Hochreiter and J. Schmidhuber[6] have proposed a special network archi-
tecture that has some memory cells that enables constant, non-vanishing error
flow within the memory cell. They used a variant RTRL and only O(n2) of com-
putational cost is required. However, special structure is necessary and it cannot
be applied to the general recurrent neural networks.

Therefore, clearly, a practical learning algorithm for recurrent neural networks
that need O(n2) or less memory and O(n2) or less computational cost is required
where n2 is equivalent to the number of synapses. PRL is an algorithm that ca-
pable to keep the order of memory size and computational cost as low as O(n2),
by introducing some variable to hold some past states which enables constant
memory and local computation to be assigned at each synapse. Therefore, this
does not only reduce the memory capacity and computational cost drastically,
but also increases the feasibility as a hardware system. In the previous work, it
was shown that benchmark problems (sequential EXOR and 3-bit parity prob-
lem) could be learned successfully by PRL even though the learning performance
was often quite inferior to the conventional BPTT.1

This paper presents an extension of the PRL method. The target is to make
PRL perform equivalently to or outperform the conventional methods, consid-
ering that PRL already excels in computational cost and memory size. The ex-
tension is made by adjusting hidden nodes’ output to prevent monotonous and
biased oscillation during learning as will be described in the next section. Finally,
we apply this extended PRL method to a more difficult task and compare it to
BPTT.

This paper is organized as follows. In section 2, the extended of PRL method in
the discrete time domain is introduced. Section 3 presents the improved result for
3-bit parity and the application to a pattern recognition task. Section 4 presents
the conclusion of this paper.

2 Practical Recurrent Learning (PRL)

This section briefly recounts the PRL method in the discrete time domain as
proposed in [1] at first. The forward calculation is the same as a regular neural
network[3] in which each node computes weighted sum of its inputs and non-
linear transformation by sigmoid function. The basic idea is, some variables
that are allocated to each synapse and hold the past information are introduced,
considering the relationship between the outputs of post and pre-synaptic nodes.
The connection weights between the nodes are modified by using the variables
and propagated error signal. In order to keep the memory size and calculation
time small, the error is propagated backwards like conventional BP[3] without
tracing back to the past. In the past work[2], in the continuous time domain,
1 Comparison to the RTRL is not shown in this paper, considering that RTRL is less

practical than BPTT in terms of memory capacity and computational cost in larger
networks.
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three kinds of variables to hold the following items of the past information were
introduced intuitively based on trials and errors.

1. the latest outputs of pre-synaptic nodes,
2. the outputs of pre-synaptic nodes that change recently among all the inputs

to the post-synaptic node,
3. the outputs of the pre-synaptic node that caused the changed in the post-

synaptic node’s output.

These information are held by some variables named pji, qji and rji respectively.
However, even a sequential EXOR problem could not be learned.

Then, for easy analysis, the algorithm is converted into the discrete time
domain and only variable rji was used in the previous work[1]. Among the three
variables, rji is particularly important because rji does not change when the
output of post synaptic node does not change and is useful for the problems
that need to memorize some past information before a long time lag. rji in the
discrete time domain is updated at each time step as

rji,t = rji,t−1(1 − |Δxj,t|) + f ′(Sj,t)xi,t|Δxj,t| (1)

where f ′(Sj) is the derivate of the sigmoid function of j-th post-synaptic node,
xi, xj is the output of the pre- and post-synaptic node respectively and Δxj,t=
xj,t − xj,t−1.

The important feature of rji is that, it holds the information about the out-
put of the pre-synaptic node that caused the change of the pre-synaptic node’s
output. Each synaptic weight is updated as

� wji = ηδjrji (2)

where η is a learning rate and δj is propagated error of the post synaptic nodes.

2.1 Improvement of the PRL Method

Prevention of monotonous and biased oscillation in hidden nodes. By
observing and analyzing the result from the previous work[1], it is shown that
there is some monotonous oscillation in the change of hidden nodes’ output for
PRL during the learning phase. Fig.1 shows the change of the hidden node’s
output during the learning for BPTT and PRL whose connection weight to the
output node is the largest. Almost half of the nodes’ outputs in the hidden layer
for PRL oscillate monotonously in some biased range of value. The net value of
this output lies around the saturation range of the sigmoid function. It is well
known that when the net value lies around the saturation range, the learning
does not progress and it largely affects the learning performance.

Then, in order to accelerate learning, the output of hidden nodes is adjusted
by moving the value to the vicinity of 0 when the output of the node oscil-
lates around the saturation range of the sigmoid function. At first, the temporal
average of the output is calculated in each epoch by
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Fig. 1. The change of the output of the hidden node who has the largest connection
weight to the output node for both methods. The left side is for BPTT, and the right
one is for PRL.

ōj =
∑T

τ=0 oj,τ

T
, (3)

where oj is the average of hidden jth output, T indicates the number of time
steps for one epoch. Then the value of oj,n is compared to average of oj,n−1 in
the previous epoch according to the following equation.

� oj,n = oj,n − oj,n−1. (4)

Then, if the difference of average value | � oj | was below 0.1 and the state
continued for 8 epochs, the hidden node’s output is adjusted to the vicinity of
0 by the following equation before starting the next epoch. Here, we used the
sigmoid function whose value range from -0.5 to 0.5.

oj,t = oj,t − oj,t−1. (5)

3 Experimental Results

In this section, two different experiment results are presented to show the per-
formance of the proposed extension PRL. The first experiment is the 3-bit parity
problem as a benchmark test to show that modification of oscillated hidden neu-
rons’ output could improve the learning performance. The second experiment is
a pattern classification task which is used to test whether PRL can perform in
a more practical task.

Here, the network architecture used in this paper is an Elman-type RNN.
Conventional BP method is used for the learning between hidden and output
layers, and PRL is used for the learning between input and hidden layers.

3.1 3-Bit Parity Problem

In the preceding work[1], it was shown that 3-bit parity problem could be learned
by PRL, but the learning performance is quite inferior to the BPTT method.
RNN with 1 output, 20 hidden units and 4 input signals is used here. 3 of the
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inputs are the input signals to calculate the parity, and is given at t=5, 10, 15
sequentially. The other one is given to distinguish the starting time of one epoch
and it is always 1 at t=0.

Table.1 summarizes some improving results of the PRL method. Here, suc-
cessful learning is clarified when a squared error of less than 10−3 is continues
for 100 patterns. In terms of success ratio, it is shown that PRL can perform
better than before and similar to BPTT even though no trace back is done in
this method. Although conventional BPTT performs better, in PRL, the average
success iteration can be improved more than 50% compared to before.

In addition, Fig.2 shows the change of hidden node’s output that have been
adjusted to the vicinity of 0, resulting in faster learning than before.

Table 1. Comparison results of learning success and average success iterations

Learning rate Learning success Average
of variable r (/100times) success iteration

Before modification

1 99 33,107
2 85 29,737
4 42 33,666
10 7 17,331

After modification

1 100 24,703
2 98 19,576
4 100 15,199
10 95 11,628

BPTT 100 6,297
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Fig. 2. The change of hidden node’s output after introducing the method to move the
value to the vicinity of 0

3.2 Pattern Classification Task

A critical test of the presented algorithm is to directly deal with high-dimensional,
multimedia data, such as images or speech. Here, we carry out a handwritten
digit recognition to investigate the performance of the proposed PRL.

The experiment was conducted on a digit database whose samples were col-
lected by using a pen tablet as shown in Fig.3. Each of 10 different people wrote



636 M.F. bin Samsudin and K. Shibata

each of 10 numbers from 0 to 9 twice. Thus, 200 images were collected for train-
ing in total. In addition, we added 3 sample sets from 3 other people for test
data as shown in Fig.3 to observe the generalization ability of both method.
Each image has 100 rows and 100 columns, and each of 10,000 pixels has binary
value. Considering the introduction of continuous-value inputs and effective gen-
eralization, the size of the image was reduced to 20 × 20 pixels by calculating
the average of every 5 × 5 pixels. Then, in order to enter this digit image signals
into a recurrent neural network, it is scanned column by column, resulting in 20
inputs per each step as shown in Fig.4. In addition, the number of steps is set
to 20 in one iteration to represent 20 rows, and the training signal is provided
only at t=20.

training sample

test sample

Fig. 3. Examples of handwritten 09 digit numbers

Fig. 4. A recurrent neural network with a handwritten digit image input by scanning
column by column in each step

The task here is to classify the digit images into 10 classes. For instance, if an
images of the number ’1’ is set as training data, the training signal for the 1st
node in the output layer is 0.4, while the others will be -0.4. Furthermore, Table
2 shows the other parameter setup of the task.

Table 3 summarizes the comparison results for both methods. Here, the con-
dition of successful learning is that the corresponding output to the presented
image is the maximum among all the output nodes for every presented im-
age. From the results, it is shown that the improved PRL could work even
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Table 2. Parameter setups

Nodes in input layer 20 hidden’s layer nodes

Nodes in output layer 10

Nodes in hidden layer 40

Range of sigmoid function -0.5∼0.5

Initial weight of 4.0
(self-feedback)

Initial weight 0.0
(non-self feed-back)

Initial weight random number of -1.0∼1.0
(input to hidden layer)

Initial weight 0.0
(hidden to output layer)

+

Table 3. Comparison results of learning success ratio and average success iterations
in the handwritten digit classification problem

Method Learning success Average
(/10 times) success iteration

PRL 10 25,973

BPTT 10 14,666
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Fig. 5. The right side is the change in the outputs of 0th node and 6th node for an
image of pattern ’0’ and the left side is the change for the image of pattern ’6’

in the hand-writing recognition task with almost continuous-value inputs that
is more difficult compared to the parity problem. It is also shown here that
in terms of success ratio, PRL can perform almost as good as BPTT, but
conventional BPTT still performs better in the number of average success
iteration.

In order to show how the RNN classifies the images, two samples output
changes in one epoch are shown in Fig.5 for presence of ’0’ and ’6’. The left half
of ’0’ and ’6’ is similar to each other. It can be seen that the change of output
in 0th and 6th node is similar at the early times, but the corresponding output
is increases after the latter half of the epoch.

In order to observe the generalization ability of both method, the performance
for the test data is examined. It is shown that all of the test data could be
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classified by the PRL method while 15 from 30 images in BPTT. PRL could
recognize all the images in test samples, though further experiments are required
to validate the results of generalization ability between both methods.

4 Conclusion

One extension are introduced here in order to improve performance of the PRL
method that capable to keep the order of memory size and computational cost
as low as O(n2), which are not realized by BPTT and RTRL. By preventing
the oscillated hidden node’s output from being biased to the saturation of the
sigmoid function, it was shown that the learning performance of PRL in 3-
bit parity problem could be improved. Furthermore, it was shown that PRL
works in scanned digit pattern classification task that is more practical than
the parity problem. However, since PRL is still inferior to BPTT in the average
number of iteration for learning, future investigations for further improvement
and application to more practical tasks are required.
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