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Abstract. Communication is not just the manipulation of words, but
needs to decide what is communicated considering the surrounding sit-
uations and to understand the communicated signals considering how
to reflect it on the actions. In this paper, aiming to the emergence of
purposive and grounded communication, communication is seamlessly
involved in the entire process consisted of one neural network, and no
special learning for communication but reinforcement learning is used to
train it. A real robot control task was done in which a transmitter agent
generates two sounds from 1,785 camera image signals of the robot field,
and a receiver agent controls the robot according to the received sounds.
After learning, appropriate communication was established to lead the
robot to the goal. It was found that, for the learning, the experience of
controlling the robot by the transmitter is useful, and the correlation
between the communication signals and robot motion is important.

Key words: emergence of communication, grounded communication,
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1 Introduction

Many speaking robots have appeared recently, and interactive talking can be
seen in some of them. A robot talking with humans looks intelligent at a glance,
but a long interaction with them makes us notice that the partner is not a
real life but a robot. One major reason must be that the communication is not
grounded, but is just the manipulation of words based on pre-designed rules.
Many attempts have been made to solve the “Symbol Grounded Problem”[1] for
a long time. In the model of lexicon emergence in [2] or [3], extracted features of
a presented object are associated with words or codes. Under the assumption of
common observation between two agents, the models have a way of getting the
listener’s words closer to the speaker’s.

They suppose patterns and symbols separately, and focus on bridging be-
tween them through specialized learning that is independent of the other learn-
ing. Steels himself said in [3], ”The experiments discussed in this article all
assume that agents are able to play language games, but how do the games
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themselves emerge?” The question gets the heart of the problem. Primitive com-
munication observed in animals or ancient people seems purposive such as telling
food location or coming dangers. Communication should emerge in the learning
in daily life, and the communication learning should not be isolated from the
other learning. It is worth noting that, when we see the section of the brain, the
language areas are not isolated from the other areas, nor look so different from
them. The communication is not generated only by the language areas of the
brain, but is generated by the whole brain as a massively parallel and flexible
processing system. That enables us to consider many things simultaneously in
parallel and to decide flexibly and instantly what we talk, the authors think.

The emergence of purposive communication has been aimed by evolutional
approach[4] or reinforcement learning[5]. The author’s group has also investi-
gated it through reinforcement learning[6][7][8]. Discretization of the communi-
cation signal through reinforcement learning in a noisy environment was also
shown[8]. However, in these cases, the environment is very simple, and learning
is performed only on computer simulation.

In this paper, using a real camera, speaker, microphone, and robot, a trans-
mitter learns to output two sounds with appropriate frequencies from more than
one thousand color image signals from the camera, and a receiver learns to out-
put appropriate motion commands from the received sounds. Each agent uses a
neural network to compute the output, and learns it by reinforcement learning
only from a reward when the robot reaches a goal state and a small punishment
when it is close to a wall. The emergence of symbol is left as a future problem.

There are some communication robots with one or two cameras[9][10][11], but
the camera is used for the perception of communication partners or environment
or for giving the feeling of being gazed to the partner. The camera image is not
reflected to the communication directly, and no organic integration of the camera
image and communications can be seen in them.

2 Reinforcement Learning with a Neural Network[12]

Reinforcement learning is autonomous and purposive learning based on trial and
errors, and a neural network (NN) is usually used as a non-linear function ap-
proximator to avoid the state explosion due to the curse of dimensionality. An
author has claimed that by the combination, parallel processing that enables to
consider many things simultaneously is learned purposively, seamlessly and in
harmony, and as a result, necessary functions such as recognition, memory (when
using RNN) emerges to get rewards and to avoid punishments. The flexible and
parallel processing is expected to contribute to saying goodbye to the “Func-
tional Modules” approach, in which each functional module is sophisticatedly
programed independently and the modules are integrated to develop an intelli-
gent robot. It is also expected to contribute to solving the “Frame Problem”.

The system is consisted of one NN whose inputs are sensor signals and whose
outputs are actuator commands. Based on reinforcement learning algorithm,
training signals are generated autonomously, and supervised learning is applied
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using them. This eliminates the need to supply training signals from outside.
In this paper, for a continuous input-output mapping, actor-critic[13] is used as
a reinforcement learning method. Therefore, the outputs of the NN are divided
into a critic output P and actor outputs a. The actor output vector a is used as
motion commands to its actuators after adding a random number vector rnd as
an exploration factor. For learning, TD-error is represented as

r̂t−1 = rt + γP (st) − P (st−1) (1)

where rt is the reward given at time t, γ is a discount factor, st is the sensor
signal vector that is the input of the NN at time t, and P (st) is the critic output
when st is the input of the network. The training signal for the critic output is
computed as

Pd,t−1 = P (st−1) + r̂t−1 = rt + γP (st), (2)

and the training signal for the actor output is computed as

ad,t−1 = a(st−1) + r̂t−1rndt−1 (3)

where a(st−1) is the actor output when st−1 is the input of the NN, and rndt−1

is the random number vector that was added to a(st−1). Then Pd,t−1 and ad,t−1

are used as training signals, and the NN with the input st−1 is trained once
according to Error Back Propagation[14]. Here, the sigmoid function whose value
ranges from −0.5 to 0.5 is used. Therefore, to adjust the value range of the neural
network output to that of the actual critic value, 0.5 is added to the critic output
of the neural network in Eq. (1), and 0.5 is subtracted from the derived training
signal in Eq. (2). The learning is very simple and general, and as you notice, no
special learning for communication or the task is applied.

3 Learning of Purposive and Grounded Communication

3.1 System Architecture and Robot Control Task

Fig. 1 shows the system architecture and performed task. There are a mobile
robot (e-puck) in a 30cm × 30cm square field and two communication agents;
a transmitter and a receiver. The transmitter has a camera that is fixed and
looking down the field from above. It has a neural network (NN), and its input
vector s is the RGB pixel values of the camera image. It also has a speaker and
transmits two sounds. The frequencies of two sounds are decided by the sum
of the actor output vector a and an exploration factor rnd through the linear
transformation of each element to the range between 1,000Hz and 1,300Hz. The
two sounds are one-second sin-waves, and come out successively with a small
interval. Due to a bug in the program, the frequency of the transmitted signal
was actually about 20Hz smaller than intended. The receiver has a microphone
and catches the two sounds from the transmitter. The receiver also has a NN. Its
input vector s has 60 elements, each of which represents the average spectrum
over 10Hz width around its responsible frequency of one of the two sounds and is



4 K. Shibata & K. Sasahara

camera

robot

goal

FFT

FFT

603 3

RLRL

transmitter receiver

1785 300 75 20 20

robot

camera

micro
phone

speaker

speaker
microphone

goal

right wheel

left wheel

freq1

freq2

critic critic

Fig. 1. System architecture and robot control task. In this figure, two speakers and
two microphones are drawn, but actually, two sounds come out from one speaker with
a small interval and are received by one microphone.

normalized by the maximum value. The receiver generates the control commands
for the left and right wheels of the robot in proportion to the sum of its actor
output vector a and an exploration factor rnd, and sends them to the robot
through bluetooth.

Learning is very easy, and just proceeds according to the regular reinforce-
ment learning independently in each agent as described in the last section. There
is a big red circle in the center of the robot exploration field. When the robot
center reaches the circle, the both agents get a reward 0.9 and the episode termi-
nates. When the robot comes close to the wall, it is brought back to the position
at the previous time step, and a small punishment -0.01 is imposed.

A sample raw camera image is shown in Fig. 2(a). To reduce the computa-
tional time, the image is resized to 26×20. Fig. 3 shows the definition of forward
and backward and also relative and absolute orientation of the robot. The green
part indicates the front of the robot, and absolute angle θ is the angle from
the vertical axis of the image, and relative angle α is the angle from the line
connecting to the center of the goal.

In the preliminary learning in which the NN with the input of 26×20 pixels is
trained to output the relative distance and orientation (cosα, sinα) for a variety
of robot locations by supervised learning, the error for the orientation outputs did
not decrease so much. It would be difficult to recognize the relative orientation
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(a) Sample camera image (b) Robot-centered image

Fig. 2. Robot-centered image
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Fig. 3. The definition of forward and
backward, and absolute and relative
orientation θ and α of the robot.

for every robot location from the image inputs. Therefore, the robot-centered
image as shown in Fig.2(b) was introduced. From the viewpoint of autonomous
and seamless learning, acquisition of appropriate image shift by camera motion
through learning is expected, but here, for simplicity, the image shift was given.
The empty area that appears by the shift is filled with gray color as in Fig.2(b).
Furthermore, to increase the precision, the resolution of the 5 × 5 area around
the center of the image is doubled. Each pixel color is represented by the three
signals for RGB, and 1,785 signals are the input of the NN in total. Each signal
is linearly normalized from -0.5 to 0.5 prior to the input.

3.2 Effect of Preparation Learning

In this task, the robot can reach the goal area by going forward or backward
after changing its orientation by rotating motions. The rotational direction can
be left or right, but for eliminating wasted motion, the optimal one is right
for α ≤ 90◦ or 180◦ < α ≤ 270◦, and left for otherwise. Around α = 90◦

or α = 270◦, the optimal direction changes drastically by the small difference
of α. After learning, the robot could reach the goal successfully. However, the
rotational direction was not optimal, but was always the same. That would be
because, for the transmitter, the communication signals do not directly influence
the robot motion, but indirectly influence it through the receiver.

Then, before the communication learning, the transmitter learns directly to
control the robot by reinforcement learning as a single agent learning. After that,
using the internal representation of the NN, in other words, after resetting all
the connection weights between hidden and output layers to 0.0, it learns the
communication signals with the receiver. After the single agent learning, the ro-
tational direction was appropriately chosen depending on the relative orientation
α. Also after the following communication learning, the direction was appropri-
ately chosen as shown in the next section. It is interesting that the previous
experiments are useful for learning of appropriate communication.

3.3 Correlation between Communication Signals and Motions

One of the reasons of unsuccessful learning found during investigation is little
correlation between communication signals and motions. In the receiver’s NN,
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Fig. 4. The loss of the correlation between the frequency of a communication signal
and the output of each hidden neuron by random initial weights in the receiver agent.

each hidden neuron had a random initial connection weight to each input signal
after FFT. Therefore, the output of the neuron does not change monotonically
according to the frequency of a communication signal as shown in Fig. 4(a).
Then, the motion commands, which are the receiver’s actor output, also have
little correlation with the frequency. If the correlation does not exist, it is dif-
ficult for the transmitter to know whether the frequency should be increased
or decreased to make the robot motion more appropriate. Accordingly, in this
research, the weights for the inputs for one communication signal to each hid-
den neuron increase or decrease gradually as the responsible frequency of input
increases as shown in Fig. 4(b). In the same reason, the exploration factor rnd
that is added to the receiver’s actor output is ±0.1, while the transmitter’s
exploration factor is ±1.8. It is reported also in [7] that such setting is useful.

4 Experiment

Parameters in this learning are shown in Table 1. Because of the high-dimensional
input, the NN in transmitter has 5 layers, while the receiver has a 3-layer NN.
6,000 episodes of learning were done. The range of initial location of the robot
becomes wider gradually as the learning progresses. Fig. 5 shows two sample
episodes with no exploration factors after learning. In one of the episodes (a),
the robot was located upper-left area and the absolute orientation of the robot
was θ = 0◦, that means that the green part of the robot was located upper
than the white part. In the other episode (b), the robot was located lower-
left area and the orientation was also θ = 0◦. For each episode, time series of
camera image, transmitter’s critic and actors (signal frequencies), and receiver’s
critic and actors (motion commands) are shown. In the first sample, at first,
the transmitter sent a high frequency sound followed by a low frequency sound,
and the robot went backward rotating anti-clockwise. After that, the transmitter
sent high frequency sound and then a little high frequency sound, and the robot
went backward, and finally arrived at the goal. In the second sample, at first,
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low-frequency sound and then high-frequency sound are sent, and the robot went
forward rotating clockwise. After that, the transmitter’s second sound became
around the middle, and the robot went forward until it arrived at the goal.

Table 1. The parameters used in the learning.

transmitter receiver

discount factor γ

penalty

reward

exploration factor

initial weight (hidden -> output)

initial weight (input -> hidden)

learning rate

number of neurons 1785-300-75-20-3 60-20-3

0.5 0.3

weight after
preparation learning

0.9

0.01

0.96

random [-1.8 - 1.8]

random [-0.5 - 0.5] random [-2.0 - 2.0]

random [-0.1 - 0.1]

orderd (-2.0 - 2.0)

Fig. 6(a) shows the two signal frequencies (transmitter’s actor outputs) for
some combinations of the robot location and absolute orientation θ. The fre-
quencies are generated in the transmitter from the actually captured camera
image. It can be seen that the frequencies are different depending on the lo-
cation or orientation of the robot, but when the relative location of the goal
from the robot is the same, the frequencies are similar to each other (e.g. upper
left in (a-1) and lower left in (a-2)). Fig. 6(b) shows the motion commands (re-
ceiver’s actor outputs) for some combinations of the two signal frequencies. To
make this figure, actual sin-wave sound were emitted from the speaker, caught
by the microphone, and were put into the receiver’s NN after FFT. It can be
seen that two motion commands change smoothly according to the two signal
frequencies. Fig. 6(c) shows the relation between robot state and motion com-
mands. The motion commands were generated from the actually captured image
through the transmitter, the speaker, the microphone, FFT, and the receiver. It
is shown that through appropriate communications, the robot rotated appropri-
ately depending on the state even though the robot motion was not completely
optimal.

The communication signals represent only the motions that the robot should
execute, but does not represent the state or action value. Therefore, the receiver
cannot represent the critic considering the robot state, but acquires the mapping
from the communication signals to the robot motions. That is also shown in [15],
and the problem of state confusion in the receiver was pointed in it.

5 Conclusion

It was shown that using a real mobile robot, a camera, a speaker, and a micro-
phone, the communication from the transmitter, who saw the robot’s state as
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the camera image, to the receiver, who generated the motion commands to the
robot, could be established through reinforcement learning only from a reward
and punishment. It is also claimed that in the communication learning, actual
control experience in the transmitter, and also the correlation between the trans-
mitted communication signal and the final effect are important. In this paper,
the communication signals are continuous, and in this meaning, the “Symbol
Grounding Problem” has not been solved. However, purposive and grounded
communication that includes what should be communicated considering the sit-
uation through many sensor signals and also how should the communication
signals be reflected on motions was acquired through learning without any spe-
cialized learning for communication.
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