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Abstract. For developing a robot that learns long and complicated ac-
tion sequences act in the real-world, autonomous learning of multi-step
discrete state transition is significant. It is generally thought to be dif-
ficult to achieve both holding and transition of states through learning
in a recurrent neural network. In this paper, only through the reinforce-
ment learning using rewards and punishments in a simple learning system
consisting of a recurrent neural network, it is shown that a multi-step
discrete state transition emerged through learning in a continuous state-
action space. It is shown that of the two-switch task, two states transition
represented by the two types of hidden nodes emerged through the learn-
ing. In addition, it is shown that the contribution of the dynamics in the
RNN based on the discrete state transitions leads to repetition of the
interesting behavior when no reward is given at the goal.

Keywords: Recurrent neural network, multi-step discrete state transi-
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1 Introduction

For human being, long and complicated action’s success does depend on how well
the action is sorted to some discrete state transitions and how well the states are
held in memory. For instance, in order to drive a car, we usually “take the key”,
“open the door”, “start the engine” and “drive the car”. We can see here that
in order to reach the goal, humans must hold the state of “take the key” at first,
before moving to the state of “open the door”. It is a lot easier to memorize
the discretized states and form the transition between the states rather than
memorize all of the continuous states to perform appropriate action. When we
want a robot to behave like that, the user usually tries to describe and perform
all the states by developing the program. However, it is not good enough to
act flexibly in the real-world environment. Therefore, it would be a significant
step forward in the development of a potential human-like robot, if such state
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representation and action planning based unit could be learned autonomously
through experiences.

It has been said that neural networks are good at the continuous function ap-
proximation, but not good at the discrete state representation, and the research
has not well-progressed. However, it has been well researched by using the re-
current neural network (RNN), the necessary information is memorized and is
utilized in the action have been acquired through learning with the reinforce-
ment learning[1][2][3]. In addition, the authors group has profounded that the
combination of reinforcement learning and neural network lead to the emergence
of various functions purposively and harmoniously[4].

However, it is recognized to be quite difficult to realize the multi-step discrete
state transition in a neural network. That is because, the neural network needs
to hold the state basically while a prompt transition between states must be
performed as needed. When the attractors with a strong entrainment are formed
to hold the states, it is thought to be difficult to move from that attractor
to another in order to achieve the state transitions. If the entrainment of the
attractors is too week, the transitions may occur inessential. Even to learn the
counter task that counting the input signals by supervised learning is reported
to be difficult[5]. Therefore, it is thought to be difficult to achieve both holding
and transition of states through learning based on the reward and punishment
that are scalar signals.

It is considered that in the learning of memory-required task as mentioned
above[1][2][3], a single-step state transition based on the memorization of nec-
essary information emerges by using a recurrent neural network with a rein-
forcement learning. However, there are no research that shows the emergence
of multi-step discrete state transition through reinforcement learning using a
recurrent neural network as far as the authors know. The authors believe that
overcoming this problem opens the way to develop the human-like robot. Thus, in
this paper, only by using the reward and punishment through the reinforcement
learning, it is investigated whether multi-step discrete state transition emerges
or not. Furthermore, it is confirmed that the representation of two states transi-
tion has been acquired through learning. In addition, the behavior of the robot
when no reward is given at the goal is observed and discussed.

2 Reinforcement Learning with a Recurrent Neural
Network

Reinforcement learning is autonomous and purposive learning based on trial
and errors, and a neural network (NN) is usually used as a non-linear function
approximator to avoid the state explosion due to the curse of dimensionality.
The combination of reinforcement learning and neural network seems promising
in the autonomous learning field and it was observed by the work of the author’s
group that the combination leads to the emergence of various necessary functions
such as recognition, prediction, memory and communication[4].



Emergence of Multi-Step Discrete State Transition through RL with RNN 3

In this paper, Actor-Critic with TD-learning[6] is used as a reinforcement
learning algorithm. On the other hand, the network architecture used in the
simulation here is an Elman-type recurrent neural network (RNN)[7] whose hid-
den outputs are fed back as a part of the input at the next time step. The present
observation vector xt is the external input. The outputs of the RNN are divided
into a critic (state value) C and two actor outputs (motor command) A. For
learning, TD-error is represented as

r̂t = rt+1 + γC(xt+1)− C(xt) (1)

where rt+1 indicates a given reward at time step t+ 1, γ is a discount factor, r̂t
is the TD error, and C(xt) is the critic output when xt is the input of the RNN.
After the forward computation in the RNN for the new input signal xt+1, the
training signal for the critic Cd,t is generated autonomously based on Temporal
Difference learning and Ad,t for the actor output vector as

Cd,t = C(xt) + r̂t = rt+1 + γC(xt+1) (2)

Ad,t = A(xt) + rndt · r̂t (3)

where A(xt) is the actor output and rndt is the uniform random number vector
that was added to A(xt) as an exploration factor. Then, the RNN with the input
xt is trained by Back Propagation Through Time (BPTT)[8]. In Eq.(1), 0.5 is
added to the value of the critic output, and 0.5 is subtracted from the derived
training signal in Eq.(2) in order to adjust the value range of RNN output to
the actual critic value.

3 Learning of Multi-step Discrete State Transition

3.1 System Architecture and Robot Learning Task

Fig.1 shows the system architecture and robot learning task. There are a robot,
two switches and a goal on two dimensional 6 x 6 continuous, flat square space
of arbitrary distance units. They are located randomly at the beginning of every
episode. The shape of the goal and the switches is a circle of radius 0.5. They
do not overlap with each other. The robot has to step on both of the switches
in succession from switch 1 to switch 2 before it approaches to the goal. The
input and output representations used in this simulation were straightforward.
As shown in Fig.1(a), the observation vector has 11 elements in total. 3 signals
represent the distances, 6 signals represent the angles to the goal and both of
the switches. 2 signals represent the flag information for each of the switches.
Only when the robot steps on the switch, it can perceive the flag signal whose
value is 1. When the robot is not on the switch, the flag signal is always 0. All
of these 11 signals are inputted to the RNN.

The robot gets a reward of 0.9 when it reaches the circle of the goal after
stepping on both switches in a fixed order as shown in Fig.1(b). However, if the
robot goes to the goal without stepping both switches or in a wrong order, a
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Fig. 1. System architecture and robot learning task. a) Observation vectors are the
RNN inputs and the output nodes are divided into a critic ( state value ) and two
actor outputs. Here, the two actor outputs represent step motion in x and y direction.
b) The mission of the robot is to step on both switches in succession from switch 1 to
switch 2 and then go to the goal.

punishment of -0.1 is imposed, and the episode is terminated. Moreover, if the
robot collides to the wall, it is brought back to the place at the previous time
step and a small punishment of -0.1 is also imposed.

The RNN has three layers consisting of 11 inputs, 40 hidden nodes and 3
outputs. The maximum time steps traced back for BPTT is 20. The discount
factor γ is 0.96. The initial weight for each hidden-output connection is 0.0,
and for each non-feedback input-hidden connection is chosen randomly from -
1.0 to 1.0. In order to make the learning of the memory function easy, the initial
weight for the self-feedback connections is set to 4.0, while the other feedback
connections is 0.0. The learning rate is 0.05 for feedback connections, and 0.2
for the others.

3.2 Simulation Results

The learning results were similar to each other when more than 10 sets of random
number sequences for initial connection weights and exploration are tested. One
of them is shown in the following. Learning terminates after 250,000 episodes. As
shown in Fig.2, the number of steps to the goal during learning is plotted at every
episodes when the horizontal axis shows the number of episodes and the vertical
axis shows the number of steps to the goal. In order to show how the multi-
step discrete state transition emerges during the learning, 1000 different initial
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Fig. 2. The number of steps to the goal during learning is plotted at every episodes
when the horizontal axis shows the number of episodes and the vertical axis shows the
number of steps to the goal. The steps to the goal is decreased while the episode is
increased during the learning.

location of starting point, switches and goal are tested and the temporal change
in hidden nodes is observed. Fig.3a) shows two examples of robot trajectory after
learning which is taken from various allocation of goal, switches and starting
point. It can be seen from Fig.3a) that the robot stepped on the switch 1 at the
time step 3 and 5 respectively. In Fig.2b), the critic output is increased while the
actor x and y that represent the step motion of x and y direction are also changed
drastically. It can see that the robot went to the right direction according to the
positive value to the actor-x and actor-y. Then, the robot changed the direction
because the actor-y changed to a negative value. The same can be said to the
rest of the trajectory.

Furthermore, it is recognized that there are 2 types of nodes that seem to
represent a transition between states although the number of hidden nodes that
belong to each type is not so large, only 3 for type 1 and 1 for the type 2 among
40 hidden nodes. Fig.3c) and d) shows the temporal changed in hidden 2nd, 7th,
26th and 40th nodes in each episode. The type 1 nodes shown in Fig.3c) changed
its output when entering the area of switch 1 and kept their output until the
reward is given. On the other hand, the type 2 node shown in Fig.3d) seems to
memorize the flag 2.

3.3 Test Performance and Observation of Temporal Change in
Hidden Nodes.

Furthermore, in order to observe the robot’s behavior, no reward was given and
the episode was not terminated even though the robot succeeded to reach the
goal. It is quite interesting to observe that the robot returned to search for both
of the switches again even though no clue is given to the robot. As shown in
Fig.4a), after stepping into the area of goal, the robot changed its direction to
the switch 1 and 2 for several times. In addition, we could see some oscillation
in the temporal changed for type 1 and 2 in hidden nodes as shown in Fig.4b)
and c).
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Fig. 3. a) Some examples of different robot trajectory. b) The change of critic and
actor output for each trajectory in a). c) The change of type 1 hidden node’s output
that seems to respond to state 1 d) The change of type 2 that seems to respond to
state 2

In the robot’s experiences, when it succeeds to reach the goal with step-
ping the switches in a fixed order, the episode always terminated with a reward.
However, when the reward did not perceive, it is thought that due to the gener-



Emergence of Multi-Step Discrete State Transition through RL with RNN 7

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

y-
ax

is

x-axis

start

switch1

switch2

goal

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

y-
ax

is

x-axis

start

switch1

switch2

goal

a)

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25  30

H
id

d
e

n
 o

u
tp

u
t

Iteration

h2
h26
h40

on the switch 1 on the switch 1

on the goal on the goal

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25  30

H
id

d
e

n
 o

u
tp

u
t

Iteration

h2
h26
h40

on the goal

on the switch 1 on the switch 1

on the goal

b)

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25  30

H
id

d
e

n
 o

u
tp

u
t

Iteration

h7

on the goal

on the switch 2 on the switch 2

on the goal

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20  25  30

H
id

d
e

n
 o

u
tp

u
t

Iteration

h7

on the goal on the goal

on the switch 2 on the switch 2

c)

Fig. 4. a) The robot’s behavior after no reward is given and the episode is not termi-
nated. Robot kept going to the switch again even though no direction or clue is given.
Some oscillation is observed to the nodes that seems to respond to the state 1 and 2
in b) and c)

alization from experience, the robot seems to think that it had forgotten to step
on the switches even though it actually had stepped. Furthermore, it was shown
that the robot took the trajectory with a proper order again and again. The
discrete change in the type 1 and 2 hidden nodes also repeated synchronously
to the behavior. The interesting behavior must be contributed by the dynamics
based on the discrete state transition in the RNN. The type 1 and type 2 hidden
nodes can be considered as control valuables and it is similar to the parametric
bias proposed in [9].



8 M.F. Samsudin, Y. Sawatsubashi, K.Shibata

4 Conclusion

In a memory-required task, a multi-step discrete transition emerged through a
simple learning system consisting a recurrent neural network trained using a
reinforcement learning in a continuous state-action space. From the simulation
results, it was confirmed that two types of hidden nodes represented the state
transition between before and after the pressing of one of the two switches.
Furthermore, an interesting repetitive behavior of the robot was observed when
no reward was given even the robot reached the goal. It was suggested that the
dynamics in the recurrent neural network based on the discrete state transition
is contributed to the behavior.
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