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Abstract. We have expected that dynamic higher functions such as
”thinking” emerge through the growth from exploration in the framework
of reinforcement learning(RL) using a chaotic Neural Network(NN). In
this frame, the chaotic internal dynamics is used for exploration and that
eliminates the necessity of giving external exploration noises. A special
RL method for this framework has been proposed in which ”traces”
were introduced. On the other hand, reservoir computing has shown its
excellent ability in learning dynamic patterns. Hoerzer et al. showed that
the learning can be done by giving rewards and exploration noises instead
of explicit teacher signals. In this paper, aiming to introduce the learning
ability into our new RL framework, it was shown that the memory-
required task in the work of Hoerzer et al. could be learned without
giving exploration noises by utilizing the chaotic internal dynamics while
the exploration level was adjusted flexibly and autonomously. The task
could be learned also using ”traces”, but still with problems.
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1 Introduction

In recent years, Deep Learning, in which a large-scale neural network(NN) with
many layers learns to process raw sensor signals in parallel, has surpassed exist-
ing systems in various fields. That suggests the difficulty in understanding the
phenomenal performance of our parallel brain through our sequential conscious-
ness and then developing an appropriate program by hand for such massively
parallel processing. For a long time, our group has pointed out this difficulty and
has suggested the necessity to develop a system in which the whole process from
sensors to motors consists of a NN and necessary functions or useful internal
representations emerge through reinforcement learning(RL) with explorations
and rewards[1][2]. Recently, a recurrent NN (RNN) has been employed to deal
with dynamics, and it was confirmed that the function of ”memory” or ”pre-
diction” emerges in a simple task[3][4]. However, there seems to be a limitation
for a non-chaotic ”silent” RNN to form multi-stage state transitions through
learning[5].
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Thus, we thought that the complex dynamics is not formed from scratch
in a non-chaotic ”silent” RNN but is reformed from rich and chaotic internal
dynamics in a chaotic NN. The dynamics is used also for exploration in RL,
and that eliminates the need for giving exploration noises from outside. It is
expected to become purposeful through learning reflecting the causal relations
of the world and finally reach dynamic higher functions such as ”thinking”.
In this new RL framework, since exploration components cannot be separated
from the outputs, training signals cannot be derived. Therefore, instead of using
error back propagation as in the conventional RL, a special learning method, in
which ”traces” are introduced, was proposed and confirmed to work in an easy
task[6][7].

On the other hand, recently, reservoir computing such as Echo State Net-
work[8] and Liquid State Machine[9] has been focused on. In this trends, Sussillo
et al. trained reservoir networks by the new learning procedure called FORCE
Learning[10]. In this procedure, the outputs are returned to the network along its
feedback pathway and only readout weights are modified to match the network
outputs with target patterns. Then, the network can learn to generate complex
dynamic patterns amazingly easily and rapidly.

Hoerzer et al. showed that a reservoir network can learn through Reward-
Modulated Hebbian Learning in which instead of explicit teacher signals, ex-
ploration noises and the reward to show the improvement of the performance
derived from the error between outputs and targets were given[11]. In this re-
search, it was shown that the network learned various dynamic patterns or a
working memory task.

From the above, we think that it is essential to introduce the learning ability
of dynamical patterns into our new RL framework to realize dynamic higher
functions such as ”thinking”. In this paper, as the first step of this attempt, we
examine whether the working memory task, which a reservoir network learned
from reward signals in Hoerzer’s work, can be learned without giving external
exploration noises by utilizing the internal chaotic dynamics of the network as
well as in our new RL framework. Next, we also examine whether the network
can be trained with ”traces”, which are used in our new RL.

2 Method

2.1 Network

In this paper, we use the network as in Fig.1, which has basically the same struc-
ture and connection weights in the previous researches[10][11]. The network is
composed of N = 1000 neurons, and they are sparsely and recurrently connected
(connection probability p = 0.1). There are four external inputs each of which
is fed to all the neurons. There are two output units called readout units, and
are connected by all the network neurons. Each output from the corresponding
readout unit is returned to all the network neurons along its feedback pathway.
The model of each network neuron is a dynamical firing-rate model. The internal
activity(membrane potential) of the j-th network neuron at time t is given as
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Fig. 1. The network model. It has 4 inputs,u1(green),u2(orange),u3(cyan),u4(brown)
and 2 outputs,z1(red),z2(purple). In the network, 1000 neurons(blue) are recurrently
connected(connection probability p = 0.1).

xj(t) =
(
1− ∆t

τ

)
xj(t−∆t)+

∆t

τ

(
λ

N∑
i=1

wrec
ji ri(t)+

I∑
i=1

win
ji ui(t)+

O∑
i=1

wfb
ji zi(t)

)
,

(1)
where the step size ∆t = 1[ms] and the time constant τ = 10[ms]. λ is the
parameter that gives the scale of recurrent connection weights between the net-
work neurons, whose value is 1.8 or 1.5(the latter is used in the training with
”traces”). Larger λ produces more chaotic activities of the network. wrec

ji is the
weight of recurrent connection from the i-th neuron to the j-th neuron. These
are set to a value generated randomly from a Gaussian distribution with zero
mean and variance 1/pN . I is the number of inputs. win

ji is the weight from the
i-th input to the j-th neuron. ui is the i-th input value. O is the number of
readout units. wfb

ji is the weight from i-th readout unit to j-th neuron. These
are set to a value generated randomly from a uniform distribution between -1
and 1. zi(t) is the output of the j-th readout unit. The output of network neuron
rj(t) is computed from its internal activity xj(t) as

rj(t) = tanh
(
xj(t)

)
. (2)

zj(t) at time t is derived from ri(t) and the corresponding readout weight wji as

zj(t) =
N∑
i=1

wjiri(t). (3)
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Initially, wji is set to a value generated randomly from a Gaussian distribution
with zero mean and variance 1/N .

2.2 Learning

In this paper, only readout weights wji are trained. Excepting that exploration
noises are not added, we basically followed the learning procedure by Hoerzer et
al. in[11]. The network is trained with reward or penalty which is given depen-
dently on whether the current performance of the network P (t) is improved as
compared to its running average P (t) with time constant 5ms. P (t) is defined as

P (t) = −
O∑

j=1

(
zj(t)− fj(t)

)2

, (4)

where fj is the target for the j-th output of the network.
We use two learning methods in this research. First one is Reward-Modulated

Hebbian Learning in [11] with a little modification. The modulatory signal M(t)
is defined using P (t) and P (t) as

M(t) =

{
1 P (t) > P (t)
−1 P (t) ≤ P (t).

(5)

In [11], M(t) took the value of 1 or 0, but here 1 or −1 is used. The readout
weights are modified with M(t) as

∆wji = η
(
zj(t)− zj(t)

)
M(t)ri(t). (6)

where η is a learning constant and here η = 0.0005. z(t) is the running average
of z with time constant 5ms.

Second, we use a learning method with traces that are used in our new RL.
In this learning, to limit the value range, the output z(t) is derived as

zj(t) = tanh
( N∑
i=1

wjiri(t)
)
. (7)

The readout weights are modified with P (t) and P (t) as

∆wji = η
(
P (t)− P (t)

)
cji(t), (8)

where cji(t) is the trace which expresses the correlation between the output
increase and the i-th input in the j-th readout unit and η = 0.05 here. cji(t) is
given by

∆zj(t) = zj(t)− zj(t−∆t). (9)

cji(t) =
(
1− |∆zj(t)|

2

)
cji(t−∆t) +

∆zj(t)

2
ri(t), (10)
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where 2 is the value range of each readout unit. This equation computes the value
similar to the running average of the input, but the time constant is derived from
the output change of the unit. Therefore, when the output change is large, the
signal ri(t) is considered to be important and taken into the trace largely. When
the output does not change, the past value is kept in the trace.

2.3 Task

The network learns the task that requires working memory[11]. The network
has four inputs and two outputs. Input pulses with the average rate of 0.5Hz
are given on each input signal independently. It goes up to 1.0 taking 50ms and
then goes down with time constant 50ms. Each signal has a different meaning.
u1 and u2 are respectively ON and OFF signals for the output z1, and u3 and u4

are for the output z2. An ON or OFF signal makes the corresponding output to
be 1.0 or -1.0 respectively with time constant 20ms, and the value is kept until
the opposite signal for the corresponding output comes in.

3 Results

Fig.2 shows the network activity: outputs, inputs and activities of some neurons.
Fig.2(a) shows the activities for the first 30 seconds of learning. At first, the
network did not know its desired behavior. However, noise-like fluctuations orig-
inated from the chaotic internal dynamics appeared in the output even without
external noises. The chaotic internal dynamics performs the role of exploration,
and the outputs looks to follow the targets with a lag. However, when learning
was stopped at this timing, the output could not follow the target.

Fig.2(b) shows the activities of the network for 30 seconds of testing af-
ter 250 seconds of learning. The outputs almost match the target with no lag.
This result shows that the task can be learned without exploration noises. It
is interesting that as the learning progresses with successively given reward and
penalty (M(t)), the sharp change disappeared gradually. The activity of the net-
work seems to transit from exploration mode to stable mode, and the exploration
component from the internal dynamics decreases autonomously.

To observe whether the network can adjust the exploration level autonomously
when encountering unknown situation, the rule of learning task was changed sud-
denly. Fig.2(c) shows the network activities when the ON signal and OFF signal
were swapped between u1 and u2 and between u3 and u4 after 250 seconds of
learning. The chaotic activities appeared again and exploration was resumed
even without any direction from outside. The network activities for 300 seconds
of learning after the rule change are shown in Fig.2(d) in a compressed time
scale, and Fig.2(e) shows 30 seconds of testing after that. It shows that the net-
work could resume to explore and successfully learn the task even though the
environment was changed suddenly in the middle of learning.

To show how the chaotic activities of network neurons change during learning,
the output errors and the output change of network neurons were recorded as
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(a) First 30 seconds(training) (b) 30 seconds (testing) after 250 seconds
learning

(c) 30 seconds (training) around the rule
change at 250 seconds(vertical line)

(d) 350 seconds (training) around the
rule change at 250 seconds(vertical line)
in a compressed time scale

(e) 30 seconds (testing) after 300 seconds
from the rule change

(f) Learning with traces: 30 seconds
(testing) after 500 seconds of learning

Fig. 2. Network activities. Output z1,z2 are in red, purple respectively. The target
value is in black. Input u1,u2,u3,u4 are in green, orange, cyan, brown respectively. The
activities of 3 sample neurons from the network are in blue.
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in Fig.3. These values are the mean absolute error of the network output and
the mean absolute one-step change in each neuron output over all neurons over
every 10000 time steps. In Fig.3, it is seen in the term of 250 seconds from the
start of learning when the network learned under the first rule, the output error
decreased and the network activities decreased gradually. As soon as the rule
was changed at 250 seconds, the output error increased and, a little later, the
output change in the network neurons also increased. Then the output change
was large though it decreased sometimes, before the change decreased again as
the error decreased. It shows that the network can make the internal dynamics
chaotic autonomously to explore in unknown situation.

The result after learning procedure with traces is shown in Fig.2(f). In this
experiment, we used 0.9 and -0.9 as the maximum and minimum value of targets
to prevent reaching a limit of the outputs. Fig.2(f) shows that the reservoir
network could be trained with the traces. It seems that the outputs follow the
target precisely at a glance, but its values are close to -1.0 or 1.0 that is the
upper or lower limit of the output. That means that the output values before
the transformation by tanh are very large due to large readout weights wji.
In addition, the network parameters needed very sensitive adjustment to learn
successfully, and occasionally the output deviated largely. In this case, because
the outputs stick upper or lower limit, it was difficult to output intermediate
values and was impossible to resume to explore when the rule of task was changed
during learning. There still remain problems to be solved.

4 Conclusion

In the Reward-Based Learning of Memory Required Task in a reservoir network,
it was confirmed that the internal chaotic dynamics can perform the role of
exploration on behalf of the exploration noises added from the outside. As the
learning progressed, noise-like fluctuations in the outputs originated from the
internal dynamics decreased and the network activities autonomously transited
from exploration mode to stable mode gradually. It was also shown that when
the task setting was changed during learning, the network adaptively resumed
exploration and learned appropriately after that. Using the traces, which is used
to train a chaotic NN in the newly-proposed novel RL, the same task could be
trained as well, but further investigations are necessary. From these results, it is
expected that the learning ability of the reservoir computing can be taken into
our approach, and that enables the emergence of higher functions as the result
of developing internal dynamics through RL.
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Fig. 3. The mean absolute error(upper) and the mean absolute output change of net-
work neurons(lower) during learning. The vertical line is the timing of rule change.
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