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Abstract. Aiming for the emergence of higher complicated dynamic
function such as ”thinking”, our group has set up a hypothesis that in-
ternal chaotic dynamics in an agent’s chaotic neural network grows from
”exploration” to ”thinking” through reinforcement learning, and pro-
posed a new learning method for that. However, even after learning in a
simple obstacle avoidance task, the agent sometimes moved irregularly
and collided with the obstacle. By reducing the scale of the recurrent con-
nection weights, which is expected to have a deep relation to the chaotic
property, the problem was reduced. Then in this paper, the learning per-
formance depending on the recurrent weight scale is observed. The scale
has an appropriate value as can be seen in FORCE learning in reservoir
computing.
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1 Introduction

Aiming for artificial general intelligence (AGI), our group has proposed the end-
to-end reinforcement learning approach in which a neural network (NN) is re-
sponsible for the entire process from sensors to motors and various functions
emerge in it through reinforcement learning (RL)[1–3]. Recently, in the same
approach, the DeepMind group has shown the impressive result in TV games[4]
or game of ”Go”[5]. This supports the significance of our approach.

From the viewpoint of higher functions, it is obvious that not only static
mapping from sensor signals to motor commands but also internal dynamics
should be acquired through learning. As a kind of internal dynamics, we have
shown that memory-required functions emerge through RL by using a recurrent
neural network (RNN)[6, 7], but the acquired dynamics are limited mainly in
fixed-point convergence dynamics. However, a typical higher function such as
”thinking” needs autonomous but rational transition in the internal state.

On the other hand, exploration that is essential for autonomous learning
should be random-like, but is similar to thinking with respect to the dynamics
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with autonomous state transitions. When we stand up before a fork on a road,
we explore to choose one of the ways while considering many things such as the
road condition or traffic sign, and such exploration is not completely random on
the motor-level, but past learning is reflected on it. That suggests us that ”ex-
ploration” and ”thinking” cannot be separated explicitly. According to the con-
sideration, we have set up a hypothesis that ”exploration” grows into ”thinking”
by forming rational non-converging attractors through learning on the chaotic
internal dynamics in a chaotic neural network (ChNN). In this framework, ”inspi-
ration” or ”discovery” can be expected to emerge as unexpected state transitions
like ”chaotic itinerancy” observed in associative memory[8]. It is also expected
that exploratory behavior is autonomously resumed in unknown situations. To
realize the learning using a ChNN, we have proposed a new RL method in which
external random noises are not used anymore[2, 9, 10].

To show that the new RL method works, we have shown that an agent could
learn in several goal-directed tasks before challenging the learning of ”think-
ing”[2, 9, 10]. In an obstacle avoidance task using a wheel-type robot and visual
sensors, the agent could learn to reach the goal while avoiding the obstacle[10].
However, even after learning, it was observed that the agent sometimes made
irregular motions suddenly or collided with the obstacle and trapped there for a
while. To solve the problem, the scale of the recurrent connection weights in the
ChNN, which is expected to have a deep relation to the chaotic property, was
reduced, and the problem was actually reduced. Then in this paper, the learning
performance depending on the recurrent weight scale is observed.

On the other hand, FORCE learning that is a kind of supervised learning
using a reservoir can learn to generate complex dynamics easily and rapidly[11].
It was reported that the scale of recurrent connection weights influenced the
learning performance, and the relation to the chaotic property in the reservoir
network was discussed. It has been also shown that the reservoir can be learned
from reward-like signals[12, 13]. Then, referring to the result in FORCE learning,
we discuss our results in relation to the chaotic property.

2 Reinforcement Learning (RL) using a Chaotic Neural
Network (ChNN)

RL is autonomous and purposive learning to get more reward and less punish-
ment. In general RL, an agent explores stochastically using external random
noises, but here, it explores by chaotic dynamics generated inside its ChNN
without adding random noises.

To deal with continuous motions, Actor-Critic is used as a RL architecture.
To isolate the critic from the chaotic dynamics, the ChNN is used for the actor
and a regular layered NN is used for the critic as shown in Fig.1. The Actor
ChNN outputs A(St) are used as motion signals, and the Critic NN output
V (St) is used as state value where St is the sensor input vector at time t. The
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neuron model used in both NNs is static as
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where ul
j,t and xl

j,t are the internal state and the output of the j-th neuron in

the l-th layer at time t, and wl
j,i is the connection weight from the i-th neuron

in the (l − 1)-th layer to the j-th neuron in the l-th layer. The second term in
the right-hand side is only for the hidden layer in the actor ChNN, and wFB

j,i

is the recurrent connection weight from the i-th neuron to j-th neuron in the
hidden layer. All the weights are decided randomly. In this paper, the scale of
wFB , which is the size of the symmetric uniform random number, is varied and
the difference in learning performance is observed. The activation function is
the sigmoid function f() whose value ranges from -0.5 to 0.5, and the output is
xl
j,t = f(ul

j,t).
For learning, TD-error r̂t is represented as

r̂t = rt+1 + γV (St+1)− V (St) (2)

where rt+1 is the reward given at time t + 1, γ is a discount factor. TVt
, which

is the training signal for the critic output at time t, is computed as

TVt
= V (St) + r̂t = rt+1 + γV (St+1). (3)

The critic NN is trained once according to Error Back Propagation using TVt .
In the proposed method, there is no external random noises added to the

actor outputs. Only the connection weights wl
j,i from inputs to hidden neurons

or from hidden neurons to output neurons are trained. The weight wl
j,i in the

ChNN is modified using the causality trace clj,i,t and a learning rate η as

∆wl
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l
j,i,t (4)

where ∆wl
j,i,t is the update of the weight w

l
j,i at time t. The trace clj,i,t is put on

each connection, and takes in and maintains the input through the connection
according to the change in its output ∆xl

j,t = xl
j,t − xl

j,t−1 as
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)
clj,i,t−1 +∆xl

j,tx
l−1
i,t . (5)

3 Simulation

In this paper, the same obstacle avoidance task as in [2, 10] is simulated. In this
simulation, as shown in Fig.1, there is a 20× 20 field, and a goal is fixed at the
upper center area (0,5) with radius r = 1.0. An agent (r = 0.5) and an obstacle
(r = 1.5) are located randomly at the beginning of every episode. Each of the 2
omni-directional visual sensor catches only goal or obstacle and has 72 cells, each
of which has 5◦ receptive field. Additionally, the other 2 sensor signals indicate
distance to the wall in front of or behind the agent. Total of 146 sensor signals are
the inputs of both actor and critic networks (= St). The right and left wheels
of the agent rotate according to the 2 actor outputs (= A(St)) respectively.
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Fig. 1. Reinforcement learning system and the obstacle avoidance task in this paper

Table 1. The parameters used in the simulation

Name Actor Critic

Number of Episodes 1,000,000
Number of Layers 3

Number of Hidden Neurons 100
Gain of Output 1

Sigmoid Function: g Hidden 2 1
Learning Rate: η 0.001 1.0

Range of Initial Weights wl
j,i [-1,1]

Discount Factor: γ — 0.99

When the agent reaches the goal
area, rt = 0.4 is given as a re-
ward. When it collides with the
obstacle or a wall at the bound-
ary of the field, rt = −0.1 is
given as a penalty. The episode
is terminated when the agent ei-
ther reaches the goal or fails to
do so in 1,000 steps from start.
The parameters used in the sim-
ulation are shown in Table 1.

The scale of wFB was changed in 8 cases from 0.3 to 10.0, and 10 simulations
were done with a different random sequence used for connection weights and the
initial arrangement of agent and obstacle at each episode. In Fig.2, (a) shows
the number of steps from the start of the agent to the goal and (b) shows the
number of collisions with the obstacle until the agent reach the goal. Mean and
standard deviation during 900,000 to 1,000,000 episodes are shown for each scale
of wFB in each graph in Fig.2. As the scale is smaller, the numbers of steps and
collisions tend to decrease, and the both becomes minimum when the scale is 0.7.
However, when the scale is less than 0.7, they are larger than the case of 0.7, and
the standard deviations for them also become larger. Furthermore, although not
shown in Fig.2, when the scales is 0.1, the agent could not sufficiently explore
the field and finally stopped moving.

Then, three cases, in which the scale is 10, 0.7 or 0.5, are picked up and the
details are shown as follows. In Fig.3, (a) shows learning curve and (b) shows
sample trajectories. In (a), the red and blue traces show the number of steps to
reach the goal at every episode and average steps for every 100 episodes respec-
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(a) steps from start to the goal

1 7420.70.50.1

(b) collisions with the obstacle or wall

Fig. 2. Change in the learning performance according to the scale of recurrent connec-
tion weights wFB

(1) scale of wFB : 10

(2) scale of wFB : 0.7

(3) scale of wFB : 0.5

(a) learning curve (red, blue: average) and
pseudo-Lyapunov exponent (magenta)

(b) sample agent trajectories
after learning

Fig. 3. Comparison of learning performance among 3 scales of wFB
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tively. The magenta trace shows the change in the pseudo Lyapunov exponent
which is an index of chaotic property of the system including the loop with the
environment, for every 1,000 episodes. The exponent shows the sensitivity to
small perturbations. When it is positive, the dynamics is likely to be chaotic.
In this paper, every 1,000 episodes, a random vector whose size is normalized
to 0.001 is added to internal state of the hidden neurons in the ChNN. After
five-step action according to A(St), the Euclidean distance d of the hidden states
from the case when no perturbation is added was compared between before and
after the action. The above is performed in 51 situations in which the agent lo-
cation varies as x = −8,−7, · · · , 8, y = −5 as shown in Fig.3(b) and the obstacle
location varies x = −5, 0, 5, y = 1. Pseudo Lyapunov exponent λ is calculated as

λ =
1

51

51∑
p=1

1

5

5∑
t=1

ln
d
(p)
t

d
(p)
t−1

. (6)

To observe the agent behavior after learning, the goal and obstacle are lo-
cated at (0,5) and (0,1) respectively, and the initial agent location varies as
x = −8,−7, · · · , 8, y = −5. The trajectories of the agent are shown in (b).
Fig.3(a-1) shows that the number of steps is larger in the latter stage of learning
than the cases of the other two scales. As shown in Fig.3(b-1), the agent often
moves irregularly at a whole. Especially three trajectories when starting from
(-1,-5), (0,-5) and (1,-5), it collided with the obstacle many times. Additionally
in (a-1), the pseudo-Lyapunov exponent is as large as around 1.4 during learn-
ing. It is thought that the hidden neurn outputs were in the saturation area of
sigmoid functions and they changed suddenly by the chaotic property that could
not be suppressed during learning. When the scale is 0.7 (in (b-2)), the agent
moves smoothly at a whole. As shown in Fig.3(a-3) when the scale is 0.5, the
agent sometimes could not reach the goal and the episode failed. The change
in the exponent in (a-2) and (a-3), are similar and they decreases slowly as the
progress of learning.

Fig.4 shows how the agent behavior varies depending on the initial agent
location in the area y < −1 where the agent is located father than the obstacle
from the goal. (a) shows distribution of the initial agent location from which the
agent passed the left side or the right side of the obstacle to reach the goal. (b)
shows frequency distribution of collisions with the obstacle or the wall for each
initial agent location. In (a), the agent is likely to pass through the left side of
the obstacle when the initial location is in the left side part of the field, and vice
versa. In (a-1) and (a-2), the boundary of the two areas appears in the front of
the obstacle. As shown in (b-2), the agent reaches the goal without any collision
with the obstacle in most of the entire field.

In [11], in the FORCE learning with a reservoir network, which is a kind of
RNN with fixed recurrent connection weights, the scale of weights (= g) was also
varied and it was shown that the scalse shoulde be in a range for appropriate
learning. When the scale is smaller than the range, the network is not chaotic
and fails to learn. By making the scale large, the network is chaotic, however,
learning did not converge and failed to suppress chaotic activity when the scale
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(1) scale of wFB : 10

(2) scale of wFB : 0.7

(3) scale of wFB : 0.5
(a) the side of the obstacle

that the agent passed through
for each initial agent location
(red:right side, blue:left side)

(b) the number of collisions
for each initial agent location
(blue: 0, green: 1∼5,

magenta: 6∼10, red: more than 10)

Fig. 4. Comparison of difference in agent behavior depending on the initial agent lo-
cation for 3 scales of wFB

is too strong. There are many differences from ours; output feedback, number
of neurons, sparsity of feedback connection neuron model and so on. However,
in both learning, the trend for the scale of recurrent connection weights is very
similar, and the significance of talented ”Edge of Chaos”[14] is suggested.

4 Conclusion

In this paper, our new reinforcement learning using a chaotic neural network was
applied to an obstacle avoidance task, and with varying the scale of the recurrent
connection weights, the learning performance was observed. When the scale is
larger, the frequency that the agent makes irregular motions or collides with
the obstacle increases even after learning. When the scale is smaller, the agent
trajectories after learning become smooth, but if it is too small, the agent could
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not explore appropriately and failed to learn. Therefore, it is important to set the
scale appropriately. That trend is very similar to the case of FORCE learning.
It is suggested that the learning performance is deeply related to the chaotic
property of the ChNN. It can be thought that too small scale causes lack of
exploration and too large scale causes saturation of hidden neurons and irregular
change due to remaining chaotic property. Even in the best result, the agent
sometimes still collides with the obstacle or wall. Some further improvement
and step up to learning of complicated dynamics should be done in the future.
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