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ABSTRACT

In layered neural networks, the input space is reconstructed
on the hidden layer through the connection weights from the
input layer to the hidden layer and the output function of
each hidden neuron. The connection weights are modi�ed by
learning and realize the transformation to emphasize neces-
sary information and to degenerate unnecessary one for cal-
culating the output. In this paper, visual sensory signals are
adopted as the input. In order to examine the reconstruc-
tion, (1)supervised or reinforcement learning is applied to a
layered neural network at �rst, (2)all the connection weights
from the hidden layer to the output layer are reset to 0, (3)an-
other supervised learning using some training data is applied,
and �nally (4)the output for the test data is compared to that
when the �rst learning was not applied. It is shown that the
necessary information to generate the desired output in the
�rst learning was extracted on the hidden layer.
KEYWORDS: Layered Neural Networks, Space Re-

construction, Generalization, Visual Sensor, Direct-

Vision-Based Reinforcement Learning

1. Introduction

The autonomous learning ability of reinforcement learn-
ing(RL) has been focused in these days[1]. In RL, appropri-
ate motions are obtained by learning through trial and errors.
However, when a complicated task is given to a robot, it may
require huge trials. When we look back at our living crea-
tures, three methods to solve this problem can be thought of.
One of them is that much information on genes is inherited
from our parents such that a horse just after birth can walk.
The second one is to utilize for the present learning what
we learned in the past. For example, the spatial recognition
ability is necessary in many tasks we do. We do not learn it
from the beginning in each task, but utilize the information
we obtained through the past tasks. In other words, the abil-
ity can be obtained through the tasks that need it. Finally
the third one is generalization ability of the neural networks
based on the smooth output function of each neuron.

In this paper, from the second viewpoint, the reconstruction
of input signals on the hidden layer after learning is examined.
As a typical example, the visual sensory space is adopted as
input space. In order to observe the reconstructed space on
the hidden layer, (1)all the hidden-output connection weights
are reset to 0.0 after supervised or reinforcement learning,
(2)another supervised learning using some training data sets
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is applied, and (3)the output for the test data is compared
with that when no learning was applied beforehand.

2. Space Reconstruction on the Hidden Layer

The role of hidden neurons is reconstruction of the input
space by the linear transformation through the weight ma-
trix from the input layer to the hidden layer, and by the
non-linear transformation through the output function that
is often sigmoid function. By applying the supervised learn-
ing based on BP (Back Propagation) learning[2], the space
reconstruction is processed so that the necessary information
is emphasized and unnecessary information is degenerated.
When we think the spatial recognition, the location and size
of the projected object have to be extracted from many visual
sensory signals, each of which reects the information only in
a local receptive �eld. For example, a visual sensor assumes
to catch an object as shown in Fig. 1, and only the object
location assumes to be varied between the left and right edge
of the visual sensor. In this case, the sensor has 10 sensory
cells, and then the dimension of the sensory space is 10, even
if the degree of freedom is only 1 (x). Accordingly, x is em-
phasized in hidden neurons' space through some learning in
which the output depends on x. If the hidden layer is used
in another learning in which x is also necessary to calculate
the output, information about x does not need to be learned
again from scratch. The generalization ability which men-
tioned in the �rst section, is rather e�ective on the hidden
neurons' space than on the input space. This means that
even if input patterns are not close, if the hidden states be-
come close by the transformation from the input layer to the
hidden layer, the outputs become close. In the case of Fig. 1,
the distance between input data set (a) and (b) is the same
as that between (a) and (c). However, if x assumed to be
extracted on the hidden layer, the distance between (a) and
(b) is smaller than that between (a) and (c). If the hidden
neurons are used in another learning, generalization on the
hidden neurons' space is expected to accelerate the learning.
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Figure 1: Example of reconstruction of visual sensory space



3. Simulation of Space Reconstruction
by Supervised Learning

In this section, it is examined how the input space is recon-
structed on the hidden layer by supervised learning. At �rst,
a visual sensor, which has 10 sensory cells arranged in a row
that is same as that in the previous section, was prepared as
shown in Fig. 2. Then an object, whose size was just same
as one sensor cell, was presented. Each sensory cell gave the
output as the area ratio occupied by the projected object.
The output values were continuous from 0 to 1, and were
put into a neural network directly. The output function of
each neuron was sigmoid and its value range was from 0 to
1. The training signal was 0.1 at x = 0:0 (left edge), 0.91 at
x = 9:0 (right edge), and proportional to the object location
x. x was chosen randomly at every time. After the learn-
ing, all the hidden-output connection weights were reset to
0, and the second learning was applied to the same network.
In the second learning, the same object was presented only
at the edge of the visual �eld (x = 0:0; 9:0) and the network
was trained by the same training signals as the �rst learn-
ing. Then interpolation ability was observed. The number of
hidden neurons was 10 and the network was trained for 1000
presentations with a small learning rate in each learning.

After both learnings, the average of the di�erence between
the output values and the training signals given in the �rst
learning for the 19 object locations at intervals of 0.5 was
calculated. Then the average, maximum and minimum value
when the initial connection weights are varied, are shown in
Table 1. The �rst column shows the result when the �rst
learning was not applied. The second shows that after the
both learnings. The third shows that when the input-hidden
connection weights were �xed in the second learning. The
fourth shows that when the second learning was not applied.
Though the result depends deeply on the initial condition, it
can be said that the di�erence after the second learning was
reduced by applying the �rst learning. The di�erence was
reduced more by �xing the input-hidden weights.
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Figure 2: Simulation when the visual sensory cells are ar-
ranged in a row

The typical output pattern is shown in Fig. 3. x axis shows
the object location and y axis shows the output. The thick
straight line shows the training signals. From this �gure, it is
known that the outputs become close to the training signals
by the second learning in which the object was presented
only at the edge of the visual sensor when using the hidden
neurons trained by the �rst learning. The outputs for the
object locations at which the object was not presented in the
second learning, are slightly closer to 0.5 than the training
signals. This is because the locality and the generalization of

Table 1 Di�erence from the expected value in the case of
interpolation

�10�2 no 1st
learning

both
learnings

�xed i!h
weights

no 2nd
learning

average 4.327 0.328 0.168 0.003

max 8.602 1.035 0.858 0.005

min 0.880 0.076 0.022 0.001
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Figure 3: Typical output pattern in the case of interpolation

Table 2 Di�erence from the expected value in the case of
extrapolation

�10�2 no 1st
learning

both
learnings

�xed i!h
weights

no 2nd
learning

average 8.587 2.882 1.571 0.003

max 12.778 6.361 5.590 0.005

min 5.324 1.299 0.169 0.001
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Figure 4: Typical output pattern in the case of extrapolation

the second learning were mixed. If the connection weights are
�xed in the second learning, the e�ect of the locality in the
second learning is reduced, and the e�ect of the �rst learning
becomes larger relatively.

Table 2 shows the error when the object was presented only
at x = 0:0; 4:5 in the second learning. In this case, extrap-
olation ability is observed. Fig. 4 shows the typical output
distribution. It is known that generalization ability along x

axis is not so e�ective like the interpolation case, but data
is generalized even when the test data is not within the two
training data sets.

Next, 5�5 visual sensory cells was arranged in a square as
shown in Fig. 5. Then an object, whose size was just same as
one sensor cell, was presented. The training signal that was
proportional to the object location x or y was given to the
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Figure 5: Simulation when the visual sensory cells are ar-
ranged in a square
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Figure 6: Comparison of the output distribution after both
learnings according to the �rst learning

network. After the �rst learning and resetting the hidden-
output connection weights, the object was presented only at
the two corner of the sensor ((x; y) = (0; 0); (4; 4)) and the
network was trained by the same training signals as the �rst
learning. The structure of the network and training parame-
ter was the same as the previous learning.

Fig. 6 shows the output distribution after both learnings.
Fig. 6(a) shows the training signals that was proportional
to x. Fig. 6(b) shows the output when the training signals
were given as shown in Fig. 6(a) in the �rst learning. Fig.
6(c) shows the output when the training signals those were
proportional to y were given. Fig. 6(d) shows the output
when the �rst learning was not applied. It can be known
that the similar output distribution to the training signal
distribution in the �rst learning is obtained only by giving
the two sample input-output pairs in the second learning. It
can be said that after the �rst learning, the representation
that is required to make the output close to the training
signals is obtained in the hidden layer in some degree.

4. Simulation of Space Reconstruction
by Reinforcement Learning (RL)

Here we gave a \going to a target" task to a locomotive robot
with two wheels[3]. The robot has to reach the target while
avoiding an obstacle as shown in Fig. 7. It has total of 4
visual sensors. Two of them catch only the target object and
the others catch only the obstacle. It was assumed that they
can catch the target or obstacle even if it hides behind the
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Figure 7: Simulation environment of \going to a target" task
with an obstacle
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Figure 8: Comparison of the robot's routes after learning
between in the task with an obstacle and with no obstacles.

other one. One sensor for the target and one for the obstacle
were attached on the left wheel and the other pair of the sen-
sors were attached on the right wheel. Each visual sensor has
12 visual sensory cells which coveres 180 degree of visual �eld
without overlapping. The total of 48 visual signals are given
to the input layer of the neural network. The robot cannot
go through the obstacle. This means that the robot stopes its
motions when it collids with the obstacle even if the motion
signals are not 0. But it has no penalty for the collisions. The
diameters of the target and the obstacle are both 1.0 and the
length of the robot is 2.0. The obstacle location is chosen
randomly in the range of �5 � x � 5; 0 � y � 7 that is the
same as the target location range at every trial. However it
is not located at the area where the distance from the target
is smaller than 2.0. In the early phase of the learning, the
object is located near the robot, and the location is spreaded
gradually. Furthermore, the obstacle is not located until the
initial target location is spreaded to the �nal range. The
neural network has two hidden layers. The lower one has 30
neurons and the upper one has 20 neurons. Here the range of
the output is from -0.5 to 0.5. The number of output neurons
is 3, and the �rst is for state evaluation and the other two are
for motion signals, each of which corresponds to the motion
signal for the right or left wheel. The �rst output neuron is
trained to change its value with a constant slope k from the
initial location to the target location during one trial as

s1(t� 1) = x1(t)� k (1)

where x1(t) is the 1st output at time t, s1(t�1) is the training
signal for x1(t�1), and k is calculated from necessary times to



arrive at the target in the past trials. This learning is similar
to TD learning[4]. When the robot gets the target, s1(t�1) =
0:4 is given, and when the robot misses it, s1(t � 1) = �0:4
is given. The other two outputs are trained to make the next
xi become large. This means that random vector rndi(t)
is added to the outputs, and the robot generates motions
according to the sum. Then the outputs are trained by the
training signal as

si(t� 1) = fx1(t)� x1(t� 1)grndi(t� 1) + xi(t� 1); (2)

where i = 2; 3. Details can be seen in [3].

Figure 8 shows the robot's routes after 167000 trials (the best
data until 200000) when an obstacle is located in front of the
robot's start position. It can be seen that the robot arrives
at each target while avoiding the obstacle. The routes seems
to be close to the optimal ones.

The reconstruction of the visual sensory space in hidden neu-
rons is examined. Here, the three output neurons were re-
moved after the RL, and one output neuron, whose connec-
tion weights from the hidden layer are all 0.0, was added
Then the generalization ability about the recognition of the
state in which the target hides behind the obstacle, between
the di�erent locations of the target and the obstacle, is ob-
served. As shown in Fig. 9, seven locations for the target
(i=0,..,6) and seven for the obstacle (j=0,..,6) are prepared
respectively. The distance from the robot to each target is 5,
and that to each obstacle is 3. Then the training signal was
given 0.3 in the case of i = j, 0.0 in the case of ji � jj = 1,
and -0.3 otherwise. i = j means the target exists just behind
the obstacle. Then the target location and the obstacle loca-
tion were chosen randomly except for the case of i = j = a

where a = 0; ::; 6, and the neural network was trained by the
training signal. a was �xed during the learning. After the
learning, the visual signals when the both target and obstacle
locations were a (i = j = a), were put into the input layer of
the network as a test data set and the output was observed.

Figure 10(a) shows the output as a function of the target lo-
cation when the obstacle is �xed at the location 3 (j = 3)
when a = 3. The solid line with squares shows the output
after both RL and supervised learning. The line with circles
shows the output when the RL was not applied. The thin line
shows the expected output for i = 3 and the training signals
for otherwise. Because the supervised learning is applied ex-
cept for i = 3, the output is almost the same as the training
signal at i = 0; 1; 2; 4; 5; 6. When only one of the target and
the obstacle is located at 3, the training signal is not larger
than 0.0. Therefore when the both locations are 3, the pos-
sibility that the output is smaller than 0.0 is large in general
for the generalization in visual sensory space. Actually the
output at i = 3 in the case of no learning hidden neurons
is far smaller than 0.0. However, the output in the case of
the trained hidden neurons is larger than 0.0. This means
that the new space was constructed on the hidden layer, and
the generalization was more e�ective on the space. Some in-
formation about the state that the target hides behind the
obstacle, became to be extracted by the RL. Figure 10(b)
shows the outputs as a function of a. The pair (i; j) = (a; a)
of the target and obstacle location, was not trained and used
as the test data set. It can be seen that the outputs are larger
than 0.0 when the a is 2, 3 or 4 at the case of trained hidden
neurons. The reason why the outputs when a is not 2, 3 or
4, are not so large, can be thought that the generalization
ability is not e�ective for the biased positions.
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Figure 9: The target and obstacle locations in the simulation
to examine the generalization ability of the hidden neurons
information.
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Figure 10: Comparison of the output after supervised learn-
ing between the trained hidden neurons and no trained hid-
den neurons

5. Conclusion

The reconstruction of visual sensory space on the hidden
layer after supervised learning or reinforcement learning is
observed. It was known that the space which was thought
to be useful to realize the desired output was constructed on
the hidden layer.
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