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Abstract

An active perception learning system based on rein-
forcement learning is proposed. A novel reinforcement
architecture, called Actor-Q, is employed in which Q-
learning and Actor-Critic are combined. The system
decides its actions according to Q-values. One of the
actions is to move its sensor, and the others are to
make an answer of its recognition result, each of which
corresponds to each pattern. When the sensor motion
is selected, the sensor moves according to the actor's
output signals. The Q-value for the sensor motion is
trained by Q-learning, and the Actor is trained by the
Q-value for the sensor motion on behalf of the critic.
When one of the other actions is selected, the system
outputs the recognition result. When the recognition
answer is correct, the Q-value is trained to be the up-
per limit of the Q-value, and when the answer is not
correct, it is trained to be 0.0. The module to compute
Q-value and the actor module are both consisted of a
neural network, and are trained by Error Back Prop-
agation. The training signals are generated based on
the above reinforcement learning.

It was con�rmed by some simulations using a visual
sensor with non-uniform visual cells that the system
moves its sensor to the place where it can recognize the
presented pattern correctly. Even though the Q-value
surface as a function of the sensor location has some
local peaks, the sensor was not trapped and moved to
the appropriate direction because the Q-value for the
sensor motion becomes larger.
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1 Introduction

Our living creatures obtain a variety of informations
about the environment through our sensors, and uti-
lize the information to generate our appropriate ac-
tions. However, the information of the environment
is too huge, it is very ine�cient to obtain all the de-
tailed information. To solve this problem, we can move
our sensors actively and obtain necessary information
e�ectively. It is called \active perception".

When our visual sensor, which obtains the largest
amount of information among our sensors, is observed,

the distribution of the visual cells is non-uniform on the
retina. We take a general view of the environment or
target object by using whole the sensor, then move the
dense part of the sensor to the appropriate place, and
�nally recognize the target correctly. The knowledge
that tells us which part of the target should we focus
on, cannot be thought inherited, but it is obtained by
learning after our birth.

Actually, the system, in which a visual sensor
moves, has been developed[1]. However, the system
does not learn where its attention should be moved for
appropriate recognition, but the main purpose is the
pursuit of a moving object, and the captured image is
processed by a given way.

On the other hand, reinforcement learning has been
focused recently by its autonomous, adaptive, purpo-
sive learning. Mainly it is utilized to learn the action
planning, but it is expected to be utilized to learn
the whole process from sensors to motors including
recognition, attention, and so on by employing neural
networks[2]. The sensory signals are put into the neu-
ral network directly and the output signals are dealt
as the motion commands.

It has been tried that the reinforcement learning is
applied to active perception systems. In the system by
Whitehead et al.[3], the block relocation task is em-
ployed, and \which block the attention frame should
be moved to" is trained by Q-learning[4], Though the
target block of the attention is selected using the Q-
values, the motion of the sensor was not considered.
Further, the recognition is not dealt with explicitly.

In the system by Shibata et al., visual sensory sig-
nals are put into a layered neural network directly, and
the neural network generates the motion command-
s for the visual sensor and the recognition results[5].
However, there are three problems. At �rst, the re-
inforcement signal, which is a continuous scalar signal
representing how the recognition outputs are close to
the ideal ones, has to be given at every time step when
the visual sensor makes a step motion. Secondly, the
sensor is sometimes trapped at the place where the val-
ue function has a local peak, and the system makes a
mistake. Third one is that the system does not make a
recognition answer at the moment when it becomes to
be able to recognize, but the timing when the system
makes a recognition answer is �xed.

In this paper, an architecture is proposed not to
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Figure 1: The active perception learning system based
on Actor-Q architecture proposed in this paper.

be trapped at a local maximum on the value function
surface, and to reach the global maximum. By this
architecture, the timing to output the recognition re-
sult is also obtained through learning. The evaluation
of the recognition result is not required at every time
step, but the binary reinforcement signal, a correct (re-
ward) or mistake (no reward), is given to the system
only when the system outputs the result. That is sim-
ilar to the experiments to examine the recognition a-
bility of monkeys.

2 Actor-Q Architecture

Fig. 1 shows the active perception learning system
based on Actor-Q architecture that is proposed in this
paper. There are two layered neural networks, Q-
network and actor-network, and the input of both net-
works are visual sensory signals. Because the input
signals are the same, it is possible that only one neu-
ral network makes a role of the both. The outputs of
the �rst network are used as Q-values. One of them is
Q-value for the sensor motion and each of the others
is Q-value for recognition of each pattern. This means
that making a recognition output is considered as one
action as well as moving the sensor, and one action is
selected using these Q-values.

When it is selected to move the visual sensor, the
sensor is moved according to the outputs of the actor
network. The two outputs are used as the velocity
of the sensor in the direction of x and y respectively.
After the sensor motion, a new image caught by the
visual sensor is put into the neural networks again,
and an action is selected again according to the new
Q-values. The Q-value for the sensor motion is trained
by popular one-step Q-learning[4]. The training signal
is computed as

Qtraining(s(t);motion) = 
max
a

Q(s(t+ 1); a); (1)

where 
: a discount factor. The neural network is
trained by Error Back Propagation, but the other out-
puts of the Q-network are not trained. Note that the
transformation between the output of the network and
Q-value is necessary.

The velocity of the sensor along each of x and y

axis is decided by the sum of the output om and the
random number rnd as

m = �(om + rnd); (2)

where �: a constant. The actor-network is trained by
the training signal as

Om;training = Om + rnd(
max
a

Q(s(t+ 1); a)

�max
a

Q(s(t); a): (3)

While in the actor-critic architecture[6], it is trained
according to the change of the critic output.

When one of the other actions, that means one of
the recognition outputs is selected, the recognition out-
put is evaluated whether it is correct or not, and the
trial �nishes. If the output is correct, the correspond-
ing output of the Q-network is trained to be Q = 1:0,
and if not correct, it is trained to be 0:0. This corre-
sponds that some juice is given to the monkey when
it makes a correct answer, and some penalty is giv-
en when it makes a mistake. The 
ow chart of this
learning is shown in Fig. 2.

3 Simulation

3.1 Task Setting

The visual sensor employed in this paper is as shown in
Fig. 3. The sizes of the sensory cells are not uniform,
such that it is small around the center of the sensor,
and it is large at the fringe. The size of the small
one is 0:5 � 0:5, while that of the large one is 1:5 �
1:5. The sensor has 9 small cells and 8 large cells,
and totally 17 cells. The output of each visual sensory
cell is the area ratio occupied by the projected pattern
against its receptive �eld. When the signals are put
into the neural network, they are linearly expanded
from -1.0 to 1.0. The initial location of the sensor is
chosen randomly under the condition that the sum of
all the sensory signals is larger than 0.5.

The sets of presented patterns are shown in Fig. 4.
In the �rst set, the di�erence among the 4 patterns ex-
ists around the upper-left corner not depending on the
presented pattern. The smallest square in the pattern
is just the same size as the small sensory cell. When
the sensor catches the center of the presented patterns,
it is di�cult to identify the pattern. So the sensor is
required to move its center at the upper-left corner of
the pattern.

In the second set, in order to identify the pattern
1 or 2, the sensor should move its center to the upper-
right corner of the pattern, while it should moved the
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Figure 2: The 
ow chart of the proposed learning.

center to the upper-left corner to identify the pattern
3 or 4. So the visual sensor is required at �rst to know
which group the presented pattern belongs to using
whole the sensor, and then to move its center to the
appropriate location.

Here the both neural networks, the Q-network and
the actor-network have three layers. The number of
hidden neurons is 30 in the Q-network, and 10 in the
actor-network. The bias value is not introduced to the
output layer in the both networks. That is because
the bias sometimes leads to instability of learning or
generates a constant 
ow of the sensor motion not de-
pending on the sensor location.

Since the value range of the each neuron's output
function is from -0.5 to 0.5, the training signal for the
neural network is obtained from Qtraining in Eq. (1)
and Eq. (3)by the transformation as

Otraining = �(Qtraining � 0:5) (4)

where �: a constant. While Q-value is transformed

from the output of the network as

Q = O=�+ 0:5: (5)

Here 0.8 is employed as � to avoid the saturation range
of the output function. If the Q becomes less than 0.0,
Q is set to be 0.0. As a discount factor 
 in Eq. (1),
0.99 is employed.

In Eq. (2), 0.4 is employed as �. So the maximum
motion step is 0.2 for each axis, while the minimum
square of the pattern and the smallest sensor cell is
0:5 � 0:5. The random numbers rnd are the uniform
random number powered by 3.0. The range is from
-1.0 to 1.0, while the output range of the network is
from -0.5 to 0.5.

One action is selected according to Boltzmann Dis-
tribution in the learning phase, and is selected accord-
ing to the greedy method in the execution phase using
the Q-values. The temperature is reduced gradual-
ly from 1.0 to 0.01 according to the progress of the
learning as shown in Fig. 5. The number of the trial
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Figure 3: The visual sensor with non-uniform visual
cells employed in this paper.
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Figure 4: The presented pattern sets.

1.0

0.1

0.01
0 1000008000020000

te
m

pe
ra

tu
re

iteration of trials

Figure 5: Temperature cooling schedule that is used in
the action selection (log scale).

iterations is 100000.

3.2 Result

5 simulation runs are done for each pattern sets vary-
ing the initial weight values in the neural network, the
initial sensor location, and the order of the presented
patterns. In all the simulation runs, the system could
identify the presented pattern after some motions. Fig.
6 shows an example of the trajectories of the visual sen-
sor when the pattern set No. 1 is presented. It is seen
that the system moves the center of its sensor to the
upper-left corner of the presented pattern from given
132 initial sensor locations those are on the grid with
0.25 width. It is noticed that when the pattern 0, 1,
or 2 is presented, the sensor moves and converges to
almost one point, and the small square that is the dif-
ference from the other pattern is caught just by one of
the small size sensory cells. This seems an e�ective and
sure way of identi�cation. While when the pattern 3 is
presented, the convergence area is wider. That is the
general property observed over the 5 simulation runs.

Fig. 7 shows an example of the trajectories of the
visual sensor when the pattern set No. 2 is presented.

A
A

(a) pattern 0 (b) pattern 1

(d) pattern 3(c) pattern 2

Figure 6: The trajectories of the visual sensor when
the pattern set No. 1 is presented.

(a) pattern 0 (b) pattern 1

(c) pattern 2 (d) pattern 3

Figure 7: The trajectories of the visual sensor when
the pattern set No. 2 is presented.

It can be seen that the system moves its sensor to the
appropriate direction depending on the presented pat-
tern. Concretely when the presented pattern is 0 or 1,
the sensor moves to the upper-right corner, while when
the pattern is 2 or 3, it moves to the upper-left corner.
The sensor catches the small di�erence between the
patterns on the center after a series of motions. Final-
ly it could make a correct answer for each of the about
132 initial locations of the sensor.

Fig. 8 shows the distribution of the Q-values corre-
sponding to each presented pattern. It is seen that the
Q-value is large around the small di�erence area, and
the area is the same as the location where the visual
sensor converges as shown in Fig. 7. Fig. 9 shows the
distribution of the Q-value for the sensor motion and
the Q-value for the pattern 1 when the pattern 0 is
presented. It is seen that the Q-value for the sensor
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Figure 8: The distribution of the Q-values that is cor-
responding to the presented pattern.
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Figure 9: The distribution of the Q-value for the sensor
motion and Q-value for the pattern 1 when the pattern
0 in the pattern set No. 2 is presented.
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Figure 10: The one-dimension of distribution of the Q-
values when the sections of the Q-value surfaces, Fig.
9(a), Fig. 10(a), and (b), are observed.

motion is always large not depending on the sensor lo-
cation because the discount factor is close to 1.0. The
Q-value for the pattern 1 is large around the upper-
right corner.

Since it is di�cult to see which value is larger at
one sensor location, the section of the Q-value surface
as shown in Fig. 8(a), Fig. 9(a),(b), is observed. Fig.
10 shows the distribution of the Q-values along the
section. It can be seen that only at one point, the
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Figure 11: Learning curve when the pattern set No. 2
is presented. The y axis indicates the probability of
the successful recognition.

pattern 1

Figure 12: The trajectories of the visual sensor when
the pattern 1 is presented after 50000 trials of learning.

Q-value for the pattern 0 is slightly larger than Q-
value for the sensor motion, while the Q-value for the
pattern 1 is always smaller than the Q-value for the
motion. The Q-value for the sensor motion is reduced
gradually from the maximum value, while the other Q
value reduced suddenly. So even if the Q-value surface
of one pattern has a local maximum, the Q-value for
the sensor motion is larger, and the system selects to
move the sensor. Accordingly the sensor is not trapped
at the local maxima.

Fig. 11 shows the learning curve of 5 simulation
runs when the pattern set No. 2 is presented. All
the learning curve is similar, and the goal probabili-
ty becomes large around 50000 trials. Fig. 12 shows
the sensor trajectories after 50000 trials. The system
makes an answer when the center of the sensor arrives
on the pattern. In this case, the system makes the
answer that the presented pattern is 0 even when the
presented pattern is 1. When the sensor motion is se-
lected, the Q-values for recognition are not trained. So
the area of the sensor location where the Q-value for
recognition is trained becomes smaller according to the
progress of the learning. Then the Q-value surface for
recognition becomes to have a strong peak. As above,
the learning of Q-value and the learning of the motion
make progress giving an e�ect with each other.

3.3 Simulation of Context Inputs

Next, it is examined that the system can generate the
di�erent series of sensor motions depending on the con-
text inputs. The pattern set as shown in Fig. 13 is
given. Each of the patterns cannot be identi�ed even
if the sensor goes to one of the corners of the pat-
tern. For example, the di�erence between the pattern
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(a) pattern 0 (b) pattern 1

(c) pattern 2 (d) pattern 3

Figure 13: The pattern set in which the system requires
the context inputs to identify each presented pattern.

(a) pattern 0 (context: 0 or 1) (b) pattern 0 (context: 0 or 2)

Figure 14: The di�erence of the sensor trajectories de-
pending on the context inputs.

0 and 1 exists at the bottom-right corner of the pattern,
while the di�erence between the pattern 0 and 2 exists
at the upper-left corner. So when the sensor reaches
the upper-left corner, it cannot identify whether the
pattern is 0 or 1, while when the sensor reaches the
bottom-right corner, it cannot identify whether 0 or
2. The context input that consists of 4 signals indicat-
ing the possibility that the presented pattern can be
each of the 4 patterns, is also given to the neural net-
work. In this case, only two of the signals are 2, which
means a possible pattern, and the other two are -2. In
this simulation, the number of the trial iterations is
2000000, and the number of the hidden neurons is 50
in the Q-network, and 20 in the actor-network. The
discount factor 
 is set to be 0.96. The temperature is
reduced as Fig. 5, but the x axis is expanded linearly.

The di�erence of the sensor trajectories depending
on the context inputs when the pattern 0 is present-
ed is shown in Fig. 14. It can be seen that when the
context inputs shows the possibility 0 or 1, the sys-
tem moves its sensor to the bottom-right corner, while
when the context shows the possibility 0 or 2, it moves
its sensor to the upper-left corner. However, it is far
more di�cult to learn these motions than the previous
simulation runs, and it needs 2000000 trials for learn-
ing. Fig. 15 shows the distribution of the Q-value for
the pattern 0. It can be seen that the distribution is
perfectly di�erent from each other even if the visual
sensory signals are completely the same.

(a) Q(0) pattern 0 (b) Q(0) pattern 0
 (context: 0 or 1)  (context: 0 or 2)

Figure 15: The di�erence in the Q-value distribution
depending on the context inputs.

4 Conclusion

Q-actor architecture and the learning algorithm have
been proposed for the active perception system based
on reinforcement learning. Through the simulation us-
ing a visual sensor with non-uniform sensory cells, it
was con�rmed that the system becomes to move its
sensor to the place where the di�erence between the
patterns exists, and then to output the correct recog-
nition result.
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