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Abstract— Iriki et al. reported interesting results regarding
the visual receptive field of two kinds of neurons in the parietal
cortex of a monkey. A monkey did a task to reach its hand or
tool to a target. The receptive field of one kind of neuron was
enlarged when the monkey used the tool grasped by its hand. The
receptive field of the other type of neurons moved together with
its hand even though the hand was hidden under an opaque plate.
They discussed those results in relation to high-order cognitive
functions such as body image and symbolization[1]-[3].

In this paper, a hypothesis is posited that these neurons
contribute to generate the critic output (state evaluation in a
given task) and are obtained through reinforcement learning.
Thereby, tool use is considered to be the change of link length
for simplicity; a layered neural network learns hand reaching
by a manipulator based on reinforcement learning. Inputs of
the network are visual sensory signals and the state of the
manipulator. Outputs are the critic and joint torques as the actor.
After learning, the manipulator came to move its hand toward the
target on the visual sensor when the target was located within the
hand’s reach. Both types of neurons observed in experiments of
Iriki et al. were found in the hidden layer of the neural network.

I. INTRODUCTION

Hand reaching to some object is a primitive movement for
humans and monkeys. It has been well investigated for analysis
of motion learning in humans. The shape of the human hand-
reaching path is known to be almost a straight line; also, the
associated speed profile is bell-shaped with a single peak in the
case of short unconstrained horizontal movements. There are
also some exceptions in the case of long-distance reaching[4].
”Minimum motion-command-change” criteria and so forth
have been proposed to explain such hand trajectories as an
optimization problem [5][4][6]. ”Feedback error learning” has
also been proposed to control the arm to follow the computed
trajectory[7].

On the other hand, the authors showed that a neural network,
whose inputs are visual sensory signals and the state of a
manipulator and whose outputs are joint torques, can learn
the hand reaching movement of a manipulator by reinforce-
ment learning[8]. Hand dynamics were considered and no
preprocessing of the visual sensory signals was executed. It
is unnecessary to compute the trajectory explicitly in this
model; therefore, the iterative computation to generate it is
also unnecessary. The obtained hand path was almost a straight
line and its speed profile was nearly bell-shaped, but not as
similar to the human’s as that derived from the optimization-

based path planning model mentioned above. However, it can
be considered that the path is obtained by learning of the entire
process from sensors to motors without any knowledge of task
and arm dynamics under insufficient simulation setups, such
as low visual sensor resolution.

Iriki et al. reported some interesting results concerning the
visual receptive field of some neurons in the parietal cortex
during hand reaching tasks by a monkey using a tool; the
report presented them in relation to high-order cognitive func-
tions. Details are described in the next section. In this paper,
the hypothesis is that these neurons contribute to generating
critic output that represents state evaluation in a given task,
and the neurons are obtained through reinforcement learning.
Here, for simplicity, tool use is considered as the change of
link length; a layered neural network learns the hand-reaching
task through reinforcement learning. The neural network is
analyzed after learning. We attempt to explain acquisition of
high-order brain function by reinforcement learning using a
neural network.

Conventionally, reinforcement learning has been used as
the learning for motion planning: in other words, control
in its wider sense. Many studies use a neural network in
reinforcement learning, but their purpose is to realize con-
tinuous and non-linear state-action mapping. On the other
hand, the authors believe that it can constitute learning for the
whole process from sensors to motors, including recognition,
attention, memory, and so forth. By training a neural network
based on reinforcement learning, the whole process can be
obtained purposively, adaptively and in harmony without being
divided into some functional modules. This is expected to
result in real intelligence that bridges the gap separating
humans and modern robots[9][10]. One aspect of this research
is to explain the process to show this ability.

The possibility that reinforcement learning is done in the
basal ganglia in the cerebrum has been shown[11][12]. That is
based on the above idea that reinforcement learning is learning
for motion planning. On the other hand, Shidara et al. showed
that some neurons in anterior cingulate in the frontal lobe
activate in relation to reward expectancy [13]. The authors
want to show the possibility that reinforcement learning is
utilized for learning of a variety of functions in our living
creatures, and contributes to learning of other areas in the
brain.



Fig. 1. Experiment of Iriki et al. This figure is copied from [2]. c©1998 by
Igaku Shoin.

Fig. 2. Visual receptive field modification of a postcentral neuron during
tool use. Dots represent positions where the neuron outputted one spike when
the object scanned on the plane. Reachable areas are shaded. This figure is
copied from [2]. c©1998 by Igaku Shoin.

II. VISUAL RECEPTIVE FIELD OF SOME NEURONS IN

PARIETAL CORTEX

A. Experiment by Iriki et al.

Iriki et al. trained a monkey to get food using a rake as a
tool as shown in Fig. 1. After learning, when the food was
just close to the monkey, the monkey got the food by hand
(A). When the food was located out of the hand’s reach, the
monkey used the rake to get the food (B). However, when the
food was located at a place where the monkey could not reach
it even with the rake, it did not try to get it (C). They observed
some neurons in the monkey parietal cortex. Just after using
the rake, the visual receptive field of a portion of the neurons
expanded from the hand-reaching area to the range where the
tool could reach, as shown in Fig. 2 [1][2]. These neurons
have been known to be bimodal neurons; they are activated
either by somato-sensory or visuo-sensory signals.

Iriki et al. also observed another type of neurons in the
same area whose receptive field moved together with the hand.
When the monkey used a tool, the receptive field was formed
around the tool[1][2]. Furthermore, Obayashi et al. showed
that even though the hand was hidden under an opaque plate,
the receptive field of such neurons still moved together with
the hand as shown in Fig. 3[3]. These neurons are also bimodal
neurons. They linked these results to the change of the body
image and symbolic representation, and mentioned high-order
cognitive functions.

B. Interpretation based on Reinforcement Learning

Though the above neurons were interpreted in relation to
high-order cognitive functions, it was not mentioned how such
neurons are created. However, they can be explained clearly if
one attempts interpretation based on reinforcement learning.

(a) visible (b) invisible

(c) invisible (d) invisible

Fig. 3. The receptive field of another postcentral bimodal neuron when a
opaque plate hides the hand: (a) shows the result for the case with no plate;
(b),(c) and (d) show results of the invisible hand case. Dots represent the
probe positions in the horizontal plane which drove the neuron to fire. This
figure is copied from [3]. c©2000 by Lippincott Williams & Wilkins.

The former type of neurons in the experiment in Iriki et
al. represents whether the monkey can get the food or not. In
reinforcement learning, the critic output represents the state
evaluation of the time to get the reward in a single reward
task. When the food is located within a range where it can be
reached with the hand or rake, the monkey can get the food
quickly; when the food is located out of the range, the monkey
cannot get the food. Therefore, the critic output should change
drastically at the boundary determining whether the food can
be obtained or not. The critic output is computed from sensory
inputs and formed through many experiences. In other words,
through many experiences, the monkey became able to judge
from visuo-sensory signals whether the food was attainable.
Accordingly, the neurons can be inferred to contribute to critic
output generation; such neurons are expected to be obtained
through reinforcement learning.

If the food is located close to the monkey, it can get the food
immediately; therefore, the latter type of neuron represents
whether or not the monkey can get the food immediately.
The critic output becomes larger when the food is closer.
Accordingly, this type of neuron can also be inferred to
contribute to critic output generation. This explanation also
clarifies that the receptive field expanded around the tool when
the monkey used it; also, neurons activate around the hand
even though the hand is hidden under the opaque plate.

III. REINFORCEMENT LEARNING

In this paper, actor-critic architecture[14] is employed and
implemented in a four-layered neural network as shown in Fig.
4. There are three outputs: one for the critic and two for the
actor.

Temporal smoothing, or TS, learning is employed for
learning of the critic [15][9]. It is very similar to temporal
difference, or TD, learning; its details can be found in [15][9].
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Fig. 4. The neural network structure.

The training signal for the critic ps is computed as

ps(st−1) = p(st) − (Pmax − Pmin)/Nmax, (1)

where p is the critic output, s is the state (sensory inputs),
and Pmax and Pmin are the maximum and minimum of the
ideal critic value range; here, Pmax = 0.4 and Pmin = −0.4
because the value range of sigmoid function employed for
each neuron’s output function is from -0.5 to 0.5. Nmax is the
maximum number of time steps to the goal; it decays gradually
for adaptation as

Nmax[i] =
{

N [i] ifN [i] > λNmax[i − 1]
λNmax[i − 1] otherwise.

(2)

The slope of the critic along with the time axis is trained
to be a constant Prange/Nmax. Accordingly, the critic output
changes as a straight line in TS learning, while it changes as
an exponential curve in TD learning. They are the same at the
point that the critic output monotonically increases when the
reward is not given. (Pmax−Pmin)/Nmax serves as a discount
factor in TD learning, but changes adaptively according to
learning performance.

The actor is trained to gain more critic value. The training
signals for the actor ms are

ms(t − 1) = m(t − 1) + rnd(t − 1){p(t) − p(t − 1)}, (3)

where m is the actor output vector and rnd is a random vector
that is added to m as a trial and error factor for actual motion.

IV. SIMULATION

A. Basic Task Setting

Here, a two-link arm as shown in Fig. 5 is supposed; the
task is to learn the hand reaching movement to reach the object
on the visual sensor. The visual sensor comprises 5 × 5 =
25 sensory cells; the receptive field of each cell is a non-
overlapping square. Cell output is the area ratio occupied by
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Fig. 5. The 2-link arm robot hand-reaching task.
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Fig. 6. Localization of a continuous input signal into 10 local signals.

a projected object. Size of the hand and target are given to be
identical to one sensory cell. Hand and target images cannot
be distinguished on the visual sensor. Each joint angle and
angular velocity is a continuous signal, but is localized into
10 signals as shown in Fig. 6 to facilitate learning of non-
linear mappings [16][9][17]. As for joint angular velocities,
to achieve higher resolution around 0, the continuous value is
transformed by a sigmoid function at first, then localized into
10 signals as well. In total, 65 signals comprise the layered
neural network inputs.

The output function of each neuron is a sigmoid function
with a value range from -0.5 to 0.5. The two actor outputs
are used as torques for joint 1 and joint 2, respectively, after
linear transformation to the range in Table I. The critic output
is used with no transformations. The network has two hidden
layers; also, the lower layer has 30 hidden neurons and the
upper layer has 10.

Initial hand and target locations are decided randomly at
each trial. When the hand is overlapped with the target and
the hand tangential velocity is less than 0.23m/s, the critic
output is trained to be 0.4 as a reward. When one joint angle
becomes less than 0 degree or the joint 1 angle is more than
90 degree, the trial is stopped and the critic output is trained
to be -0.4 as a penalty.

At the early phase of learning, the target is located close
to the hand; then initial distance from the hand is gradu-
ally increased according to learning performance. Concretely,
learning comprises 128 stages. In the first 127 stages, the
hand is located randomly in the range where the whole target
can be viewed on the visual sensor. The target is located
randomly within the range where the distance between the
hand and the target in either the x or y direction is less than



stage/127× 0.3m; also, the whole target can be seen on the
visual sensor. In the last stage, the hand is located randomly,
even outside of the visual field. When the hand reaches the
target within 5.1 sec successfully without any help, the learner
can progress one stage. If one joint exceeds the limit, even
if the target is located within the hand’s reach, the target is
moved to the hand gradually in the following two trials. If the
hand cannot reach the target within Nmax × 1.5 five times,
even if the target is located within the range where the hand
can reach, the target is also moved to the hand gradually in
the following trial.

B. Arm Dynamics

Arm dynamics are identical to [4]; they are

τ1 = (I1 + I2 + 2M2l1s2cosθ2 + M2(l1)2θ̈1

+(I2 + M2l1s2cosθ2)θ̈2

−M2l1s2(2θ̇1 + θ̇2)θ̇2sinθ2 + B1θ̇1 (4)

τ2 = (I2 + M2l1s2cosθ2)θ̈1 + I2θ̈2

+M2l1s2(θ̇1)2sinθ2 + B2θ̇2 (5)

where τi represents torque for joint i, and Mi, li, si, Ii are
mass, length, distance between a joint and center of gravity,
and inertia of the link i, respectively. If joint angle 2 exceeds
180 degree, the angle is fixed at 180 degree and dynamics
are computed as one link. Each parameter is set as shown in
Table I. The differential equation is solved numerically by the
Runge-Kutta method with sampling time of 0.02 sec.

TABLE I

PARAMETERS USED IN THE DYNAMIC ARM MODEL.

Parameter
Mi (kg)
li (m)

si (m)

Ii (kg m2)
Bi (kg m2/s)
τmax i (N m)

link2

0.2
2.0

link1

0.4
4.0

2.0
0.3
li/2

Mi * li2 / 3.0

mass
length

center of mass
rotary inertia

viscosity
maximum torque

C. Variable Link Length

At first, a simulation in which the tool use is considered as
variable link length is introduced. The length of the second
link is varied continuously between 0.3 m and 0.45 m, and
is decided randomly at every trial. The link length variable
l (0.0 ≤ l ≤ 1.0) is appended to the inputs of the network
after localizing into 10 signals as shown in Fig. 6. The arm
and visual sensor are set as Fig. 7. When the link length is
the shortest, the hand cannot reach the target on the right side
of the visual field. Even when the link length is the longest,
the hand cannot reach the target at the upper right corner. Two
broken lines in the figure indicate the boundary of the target
center whether the hand can reach or not for the case of the
shortest and longest link length respectively.

Some examples of hand paths after learning are shown in
Fig. 8 for cases of the shortest link [Fig. 8(a)] and the longest
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Fig. 7. The task setting in the case of variable link length. This figure is
drawn for the case that the joint 2 is stretched (θ2 = π), i.e. the hand is
farthest from the joint 1.

link [Fig. 8(b)]. When the target is located within hand’s reach,
the hand moves toward the target and reaches it [path (1)(4)
in Fig. 8 (a) and path (2)(5) in Fig. 8(b)]. While the hand
moves to the other direction when it cannot reach the target
[path (2)(5) in Fig. 8(a) and path (3) in Fig. 8(b)]. Even though
the hand cannot reach the target with the shortest hand [path
(2)(5) in Fig. 8(a)], it was able to reach the target at the same
location with the longest link [path (2)(5) in Fig. 8(b)]. In
[1][2], when the monkey obviously could not reach the target,
it did not move its hand. Even in this simulation, the system
seems to know whether the hand can reach or not before the
hand moves. If energy consumption cost is introduced, useless
hand motion is expected to be suppressed.

Figure 9 shows output distributions of the critic (row 1) and
two of the upper hidden neurons (rows 2 and 3) as functions of
target location for each of the shortest (two left-most columns)
and longest (two right-most columns) link lengths and for each
of the lower left (columns 1 and 3) and upper left (columns 2
and 4) hand locations. Joint angular velocities are set to 0.0.
The sign of hidden neuron 1’s output value is shown inversely
for clarity, but the represented information is not different. The
critic output on the first row of the figure is small beyond the
boundary of reaching area that is indicated by the broken line;
it is independent of hand position and length. In the other area,
the critic output increases when distance between the hand and
target decreases. Hidden neuron 1’s output on the second row
changes its value almost discretely around the reaching area
boundary; it does not depend on the distance between the hand
and target. It can be inferred that this neuron is coding whether
the hand can reach the target or not. Such a neuron can be
found in the experiment of Iriki et al. [1][2]. Four of 10 upper
hidden neurons show such distribution. Hidden neuron 2 on
the bottom row is similar to the critic output, but the output
depends more on the distance between the hand and target.
It can be inferred that this neuron corresponds to the neuron
whose receptive field is formed around the hand and moves
together with it. It can also explain that during tool use, the
receptive field expands around the tool[1][2].
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Fig. 9. Distribution of critic output and two hidden neurons’ outputs for each of two hand positions and for each of two link lengths as a function of target
location in the visual sensor. The small circles indicate hand position.

D. Invisible Hand

Here, it is supposed that the hand image sometimes disap-
pears even if the hand is located under the visual sensor as
shown in Fig. 10; also, learning of the reaching task is done.
Random numbers determine whether the hand image appears
or not with probability of 0.5, but information as to whether
the hand is visible or not is not given. Link length is fixed in
this simulation.

After learning, the hand can reach the target independent
of whether the hand is visible or not with few exceptions.
Figure 11 shows an example of the hand path after learning
for both visible and invisible hand cases. The paths are slightly
different, but the hand can reach the target in each case. In
most cases, these paths do not differ much, but in some cases
they differ more.

Figure 12 shows the distribution of one hidden neuron’s
activation for two cases of hand positions. It can be seen that
the receptive field moves together with its hand, independent
of whether the hand is visible or not; distribution of activation
is almost identical for these two cases.

E. Discussion

In this model, there remain many characteristics whose
validity should be considered, such as simplification of tool
use into variable link length, the form of input signals, the
model of each neuron, and so forth. However, even if they
were changed, the interpretation described in subsection II.B
may still be valid, and similar results as the above are expected
to be obtained.
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V. CONCLUSION

The hand-reaching task is trained by a combination of re-
inforcement learning and neural network for cases of variable
link length and invisible hand. Two types of hidden neurons
were found. The first one represents whether the hand can
reach the target or not. The receptive field of the other one
was formed around the hand, and moves together with it.
Further, even if the visual sensor was not able to catch the
hand image, the receptive field was still formed around the
hand position. These results match experimental results using a
monkey that was introduced as a neuron activation to represent

high-order cognitive functions in the brain, such as body image
and symbolization, by Iriki et al. We infer that we can show
the possibility that a combination of reinforcement learning
and neural networks can explain high-order brain functions.
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