
Discovery of Pattern Meaning from Delayed Rewards
by Reinforcement Learning with a Recurrent Neural Network

Katsunari Shibata and Hiroki Utsunomiya

Abstract— In this paper, by the combination of reinforcement
learning and a recurrent neural network, the authors try to
provide an explanation for the question: why humans can
discover the meaning of patterns and acquire appropriate
behaviors based on it. Using a system with a real movable
camera, it is demonstrated in a simple task in which the
system discovers pattern meaning from delayed rewards by
reinforcement learning with a recurrent neural network. When
the system moves its camera to the direction of an arrow
presented on a display, it can get a reward. One kind of arrow
is chosen randomly among four kinds at each episode, and the
input of the network is 1,560 visual signals from the camera.
After learning, the system could move its camera to the arrow
direction. It was found that some hidden neurons represented
the arrow direction not depending on the presented arrow
pattern and kept it after the arrow disappeared from the image,
even though no arrow was seen when it was rewarded and no
one told the system that the arrow direction is important to get
the reward. Generalization to some new arrow patterns and
associative memory function also can be seen to some extent.

I. INTRODUCTION

Humans can read a sign or symbol from various images,
understand its meaning, memorize it, and use it to generate
appropriate actions. For example, let us consider the arrow
problem that is picked up in the part of experiment in this
paper. When we see an arrow on a sign, we guess that it
means “go to the pointing direction” or “see the pointing
direction”, and then actually go to or see the direction. When
the sign goes out of our visual field, the arrow direction
is memorized, and we can act according to the memorized
arrow direction.

When we want a robot to behave like that, we usually give
a program to recognize the arrow direction, to memorize the
recognized result and to behave according to it. In this case,
the fundamental problem: “Why we humans can discover the
meaning of arrows, and get to memorize it and to behave
appropriately”, is put aside. However, from the viewpoint of
developing more flexible and intelligent robots, it must be
important to tackle the fundamental problem: “how does a
robot discover the meaning of arrows by itself” rather than
to make a robot go to the arrow direction according to a
given program. Brooks also mentioned that this “abstraction”
is the essence of intelligence and the hard part of the
problems being solved. He pointed out that usually the way

Katsunari Shibata is and Hiroki Utsunomiya was with the Department
of Electrical and Electronic Engineering, Oita University, 700 Dannoharu,
Oita, Japan (email: shibata@oita-u.ac.jp). Hiroki Utsunomiya is now with
Kyushu Toshiba Engineering Co., Ltd.

This work was supported by JSPS Grant-in-Aid for Scientific Research
#19300070

of abstraction is given and the process after that is focused,
but actually, abstraction itself is the essence of intelligence[1]

The authors have shown that by the combination of rein-
forcement learning and a neural network, through the learn-
ing of behaviors to get rewards and to avoid punishments,
various necessary functions for the task, such as recognition
or memory, emerge in the network[2]. If it is possible for
humans to discover through learning that the arrows have a
meaning and the meaning lies in their directions, the basis
of learning that can be thought of most easily must be
learning from experiences: when we turned to the direction
of the arrow, we met something good. Of course, it can
be considered that such knowledge is transferred from the
others, but in this case, another similar problem arises; why
we can get to understand what the others tell us.

Then in this paper, a system with an actual movable cam-
era learns appropriate behaviors by reinforcement learning
with a recurrent neural network (RNN) in the environment
where an arrow pattern is presented and when the camera
continues to move to the arrow direction even after it disap-
pers, it reaches a goal state and gets a reward. It is verified
(1) whether the RNN discovers that the arrow direction is
important among 1,560 visual signals, (2) whether it acquires
a way to recognize the arrow direction from the 1,560 signals,
(3) whether it gets to keep the direction after the arrow
disappears and to get the reward finally.

Some researches in which a RNN is used in reinforcement
learning have been done already[3][4][5][6][7]. Especially,
the pioneering work of Bakker et al. showed that a real
mobile robot could learn to identify the sensor signal that
is required for the later action selection and to memorize
the signal through reinforcement learning[4]. However, in
the task, the robot was required to identify it among five
sensor signals, and just to keep it without any processing.
To compress the sensor signals and to realize a discrete
state representation, an unsupervised learning method was
applied other than reinforcement learning. A special RNN
architecture was also used.

In this paper, using a general RNN, it is verified that
the necessary information can be discovered and memorized
from more than one thousand visual signals by the charac-
teristic of being purposive that reinforcement learning has,
and finally can be linked to appropriate behaviors.

II. THE MARRIAGE OF REINFORCEMENT LEARNING AND
A RECURRENT NEURAL NETWORK[2]

The system is consisted of one recurrent neural network
(RNN) whose inputs are visual signals and whose outputs

Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011

978-1-4244-9636-5/11/$26.00 ©2011 IEEE 1445

are actuator commands. The RNN is trained by the training
signals derived from reinforcement learning algorithm at
each time step. When compared with the general approach
using reinforcement learning in robotics where the entire
system is modularized into some functional modules such as
recognition, planning and control, and reinforcement learning
is used only for mapping from a state space to an action
space, the approach with no given pre-processing may seem
to be inefficient at the first impression. However, our ap-
proach enables to optimize the entire system by reinforce-
ment learning and supports purposive function emergence
based on the optimization. That is expected because the
system cannot be optimized to get more reward and less
punishment without acquiring necessary functions, and the
entire process is optimized consistently and in harmony
through the learning of a NN. The approach is also analogous
to the fact that in real lives, a nerve system connects from
sensors to actuators. For the case of this paper, discovering,
recognizing and memorizing arrow meaning is expected. In
other words, it is expected to solve a recognition problem in
which “what should be recognized” has to be discovered.

Let us see the concrete learning algorithm. Based on rein-
forcement learning algorithm, training signals are generated,
and supervised learning is done. This eliminates the need
to supply training signals from outside. In this paper, for a
continuous input-output mapping, actor-critic[8] is used as a
reinforcement learning method. Therefore, the output of the
RNN is divided into a critic output and actor outputs that
decide motions. At first, TD-error is represented as

r̂t−1 = rt + γP (st) − P (st−1) (1)

where rt is the reward given at time t, γ is a discount factor,
st is the sensor signal vector at time t, and P (st) is the
sum of the critic output and 0.5 when st is the input of
the network. Here, since the sigmoid function whose value
ranges from −0.5 to 0.5 is used, 0.5 is added to adjust the
value range of output function of the NN to the range of the
actual critic value. The training signal for the critic output is
computed as

Ps,t−1 = P (st−1) + r̂t−1 = rt + γP (st), (2)

and the training signal for the actor output is computed as

as,t−1 = a(st−1) + r̂t−1rndt−1 (3)

where a(st−1) is the actor output when st−1 is the input
of the network, and rndt−1 is the random number vector
that was added to a(st−1) as a trial and error factor when
the camera moved. Then Ps,t−1 (actually 0.5 is subtracted to
adjust it to the value range of the network output) and as,t−1

are used as training signals, and the RNN with the input st−1

is trained once according to BPTT (Error Back Propagation
Through Time)[9]. What the readers are requested is to bear
in mind that the learning is very simple and general, and
as they notice, no special learning for the task is applied.
It is focused that the meaning of patterns is discovered
and memorized through reinforcement learning with delayed
rewards and punishments.

III. EXPERIMENT

A. Setups
The environment of the experiment is shown in Fig. 1.

Four displays, from Display 0 to Display 3, are allocated on a
circle with the radius of 45cm, and at the center of the circle,
a movable camera is located. At each episode, one of some
blue arrows is chosen randomly, and presented on either of
Display 1 or Display 2 that is also chosen randomly. On the
next display in the arrow-pointing direction, a red circle is
presented, and that indicates the goal state. On the other hand,
on the next display but in the opposite direction, a green ×-
mark is presented, and that indicates a non-goal state. For
example, when a right arrow is presented on the Display 2,
which is the case of Fig. 1, the red circle is presented on the
Display 1, and the green ×-mark is presented on the Display
3. Nothing is presented on the Display 0.

θ θ

θ

45cm

45cm

45cm

45cm

Display 0

Display 1

Display 2

Display 3

Camera

Fig. 1. The environment of the experiment using 4 displays and one
movable camera. This display allocation is for the level 7 that is the final
level.

At each episode, the camera starts the state facing the
presented arrow in its center. The camera moves with the
limit of one-dimensional lateral (pan) motion. When the
camera catches the red circle, that is, when the red area is
large and the center of gravity of it is located within 4 pixels
from the image center in the 26 × 20 camera image, the
episode is terminated and a reward is given. When it catches
the green ×-mark, a penalty is given, but the episode is not
terminated immediately. If such state continues for successive
10 time steps, the episode is terminated. Since it is possible
that no arrow, no red circle and no green ×-mark are shown
in the camera image in an episode, the system cannot reach
the red circle without memorizing the arrow direction.

At the early stage of learning, the angle between any
two neighbor displays is set to 52 degree. This allocation
is defined as level 1. In this level, the gap between neighbor
displays is very small, and it does not happen that no arrow,
no red circle, and no green ×-mark are seen. When the
system can reach the goal within (level number+15) steps
for successive 50 episodes, it moves to the next level. The
angle between the displays increases by 8 degrees when

1446

input
layer

output
layer

hidden
layers

26x20x3
=1560

PIXEL[G]

PIXEL[R]

PIXEL[B]

critic

actor

motion command

state value

camera

camera image for camera

pan

300
75 20 2

Fig. 3. The architecture of the experimental system and the flow of signals

(a) disp0 - disp1 (b) disp1 - disp2 (c) disp2 - disp3

Fig. 2. Sample images between neighbor displays in the case of level 7.

moving to the next level. The location of the Display 2 is
fixed. The level increases up to the level 7 in which the angle
between displays is 100 degrees as shown in Fig. 1.

The reason why four displays are used is as follows. In the
preliminary experiment using 3 displays in which an arrow
pattern is always presented at the Display 1, the camera did
not move according to the memorized arrow direction, but
moved according to the difference of the background when
the arrow disappeared out of the visual field. If four displays
are used, when a left arrow is presented on the Display 1,
the same background appears as the case when a right arrow
is presented on the Display 2. Therefore, the system cannot
behave appropriately only from the background, and has to
memorize the arrow direction. For reference, the difference
of images between two neighbor displays is shown in Fig. 2
for the case of level 7.

The used camera is EVI-D70 by Sony Co. Ltd., and the
used displays are 19inch size with black frame except that
only the Display 3 is 17 inch sized. The size of the captured
image is 640 × 480, but due to the limited computational
power, it is used after resizing to 26×20 using the OpenCV
library. As shown in Table I, 4 patterns for each arrow
direction (right or left) are used as arrow images for learning.
7 patterns are used for test as mentioned later. When the
distance, which is the sum of the absolute value of the
difference in each RGB value between corresponding pixels,

TABLE I
THE ARROWS THAT ARE PRESENTED DURING LEARNING.

(a)arrow No.1 (b)arrow No.2 (c)arrow No.3 (d)arrow No.4

from the left arrow No.1 is computed, the right arrow No.1
and No.2 are closest two though the direction is different,
and the most distant pattern is the left arrow No.4.

Figure 3 shows the system architecture and signal flow. In
this system, since the formation of memory through learning
is required, a RNN is used as mentioned. Considering the
many input signals and expecting the formation of abstract
representation, a five-layer neural network is employed. The
outputs of the lowest hidden layer that is the closest to
the input are fed-back to itself at the next time step. The
camera image that is shrunk to 26 × 20 = 520 pixels of
RGB values are directly put into the RNN as inputs after the
linear transformation between −0.5 to 0.5. The total number
of input signals is 26 × 20 × 3 = 1, 560. Since only pan
motion is used in the camera, there is only one actor output.
According to the actor output after adding a random number
rndt, the camera moves laterally.

The numbers of neurons in the hidden layers are 300,
75, 20 from the lowest. The initial weights for self-feedback
connections are set 4.0, while those for the other feedback
connections are set 0.0 for efficient and non-divergent er-
ror propagation to the past states and for easy formation
of memory. The other initial connection weights are set
randomly between −1.0 to 1.0. The number of outputs is
two; one is for critic and the other is for actor. As a non-
linear output function, sigmoid function whose range is from
−0.5 to 0.5 is used in each neuron in the hidden and output

1447

layers. The training signals are limited from −0.4 to 0.4 to
avoid the output from being in the saturation area of the
sigmoid function. The camera is rotated as the angle that is
proportional to the actor output (a random number rndt is
added as a trial and error factor in learning phase), and it
rotates about 7.7 degree when the actor output is 0.4. The
output for critic is used actually after adding 0.5. The reward
at the goal state is 0.9, and the training signal for critic is
0.9 − 0.5 = 0.4 from Eq. (2) with P (st) = 0. When the
camera moves to the opposite direction to the arrow pointing,
and catches the green ×-mark around the center of the image,
−0.1 is substituted for r in Eq. (2) as a penalty, and the
episode continues. However, if the state continues for 10
time steps, the episode is terminated. Otherwise, the neural
network is trained according to the training signal as Eq. (2)
with rt = 0. The trace-back steps in BPTT is truncated at 10
steps. The random number rndt that is added for trial and
errors is a uniform random number whose range is decided
according to

rnd range = exp(−goal count ∗ 0.001)/2 (4)

where goal count increases by 1 when the system reaches
the goal state and decreases by 4 when it does not reach the
goal state. If goal count is set to 0 when it becomes below
0. By this setting, the range of the random number decreases
when the system continues to succeed, and increases largely
when it fails. The maximum number of steps in one episode
is set to 40. When the system does not reach the goal state in
the number of steps, the episode is terminated and is counted
as a failure. The learning rate is 0.125 for the feedback
connection weights and 0.5 for the others. The constant input
for bias is 0.1, and each bias is trained as a connection
weight.

B. Results

Fig. 4 shows the learning curve for each display-
arrow direction pair. The vertical axis indicates the number
of steps to the goal state at each episode. All the levels of
learning finished after 2,780 episodes. In the level 1 learning,
it took 1,089 episodes. Around the 300th episode, the camera
always went to the right direction not depending on the
presented arrow direction, while around a little before the
500th episode, it always went to the left direction. However,
after the level 2, it did not happen that the camera continued
to catch the ×-mark on the center except for the case of right
arrow on the display 1 in the level 4. In the level 4 learning,
it took more than 500 episodes, but in the other levels, it
took less than 500 episodes. Since the angle between displays
increased as the level goes up, the minimum number of steps
to the goal state becomes larger gradually. The difference
between the presented displays does not seem so much, but
a small difference can be seen in the level 4.

Fig. 5 and Fig. 6 show two sample camera motions after
learning. Fig. 5 shows the case when the left arrow No.1
was presented on the Display 1, and Fig. 6 shows the case
when the right arrow No.4 was presented on the Display 2.

(c) left arrow - display 1
n
u
m

b
er

 o
f

st
ep

s

50

40

0

10

20

30

Lv. 1
Lv.
2

Lv.
3

Lv. 4 Lv. 5
Lv.
6

Lv.
7

0 500 1000 1500 2000 2500
number of episodes

(a) right arrow - display 1

n
u
m

b
er

 o
f

st
ep

s

50

40

0

10

20

30

Lv. 1
Lv.
2

Lv.
3

Lv. 4 Lv. 5
Lv.
6

Lv.
7

0 500 1000 1500 2000 2500
number of episodes

(d) left arrow - display 2

n
u
m

b
er

 o
f

st
ep

s

50

40

0

10

20

30

Lv. 1
Lv.
2

Lv.
3

Lv. 4 Lv. 5
Lv.
6

Lv.
7

0 500 1000 1500 2000 2500
number of episodes

(b) right arrow - display 2

n
u
m

b
er

 o
f

st
ep

s

50

40

0

10

20

30

Lv. 1
Lv.
2

Lv.
3

Lv. 4 Lv. 5
Lv.
6

Lv.
7

0 500 1000 1500 2000 2500
number of episodes

Fig. 4. Learning curve for each display-arrow direction pair. The plot at
50 steps indicates that the camera caught the green ×-mark for successive
10 times, and the episode was terminated. The plot at 40 steps indicates that
the camera could not reach the goal state within 40 steps and the episode
was terminated.

In each test episode, no random numbers were added to the
actor output when the camera motion is decided. In each
figure, the camera image at each step and the change of
critic and actor output are shown. In the both figures, the
critic increases almost monotonically and is close to the ideal
curve. In the case of left arrow, the actor output is negative
during the episode, and on the other hand, in the case of
right arrow, the actor output is positive. In the middle of each
episode, which is around the step 7, 8 or 9, the arrow pattern
disappears, and the image is almost the same between the two
cases because in the both cases, the camera passes the same
situation as can be seen in Fig. 1. Nevertheless, the critic
increases monotonically, and the actor output is completely
different between the two cases even though the input image
looks very similar. This means that the system discovered

1448

step 1 step 2 step 3 step 4 step 5

step 6 step 7 step 8 step 9 step 10

step 11

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0.0

0.5

-0.5

a
c
to

r
o
u
tp

u
t

c
ri

ti
c
 o

u
tp

u
t

number of steps

number of steps

(b) critic output (c) actor output

(a) a series of images

ideal curve

step 12 step 13 step 14

Fig. 5. The change of captured image by the camera motion and the
change of the critic and actor outputs during one episode when the left
arrow No.1 is presented on the Display 1.

step 1 step 2 step 3 step 4 step 5

step 6 step 7 step 8 step 9 step 10

step 11 step 12

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
0.0

0.5

-0.5

a
c
to

r
o
u
tp

u
t

c
ri

ti
c
 o

u
tp

u
t

number of steps

number of steps

(b) critic output (c) actor output

(a) a series of images

 ideal curve

step 13 step 14

Fig. 6. The change of captured image by the camera motion and the
change of the critic and actor outputs during one episode when the right
arrow No.4 is presented on the Display 2.

arrow 1 arrow 2 arrow 3 arrow 4

(a) Lowest hidden neuron No. 272

0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps

0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u
tp

u
t

number of steps

(b) Lowest hidden neuron No. 142

left:disp1

right:disp1

left:disp2

right:disp2
right:disp1 right:disp2 right:disp1

right:disp1

left:disp2left:disp1

left:disp1left:disp1left:disp1left:disp1

right:disp1

right:disp2
right:disp1

left:disp1 left:disp1

left:disp2 left:disp2 left:disp2

right:disp2

right:disp2 right:disp2

left:disp2

Fig. 7. The output change of two lowest hidden neurons during one episode for each learning arrow pattern. They seems to contribute to memorizing the
arrow direction “left:disp1” indicates left arrow presented on the Display 1.

that the arrow direction is important among more than one
thousand visual signals, and learned to extract and memorize
the arrow direction. Then the appropriate state evaluation and
behavior were achieved using the memorized information.

Next, the output change during one episode for 4 learning
arrow patterns are observed in all the 300 lowest hidden neu-
rons after learning, and two neurons that look to contribute
strongly to extracting and memorizing the arrow direction

are picked up. The output changes are shown in Fig. 7. The
graph is drawn for each of the 4 learning arrow patterns.
In these neurons, it seems that not depending on the arrow
patterns, the output is positive when the arrow direction is
left, and the output is negative when the arrow direction is
right even after the arrow disappeared. In the case of right
arrow on the Display 1, the output sometimes goes close to
the 0.0. It may be due to the difference in image between the

1449

(a) Output layer

0 5 10 15

0.5

1.0

0.0

o
u

tp
u

t
number of steps

0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps

(b) Highest hidden layer

0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps

(c) Middle hidden layer

0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps

(d) Lowest hidden layer

0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps
0 5 10 15

0.0

0.5

-0.5

o
u

tp
u

t

number of steps

l:a4d2

right right

left

right

left

left

l:a1d1

l:a1d1

l:a1d1

l:a1d1

l:a4d2

l:a4d2

r:a4d2
r:a1d1

r:a1d1

r:a4d2

r:a1d1

l:a4d2

right
r:a4d2

r:a1d1

r:a4d2

l:a1d1 l:a4d2
l:a1d1

l:a4d2

l:a1d1

l:a4d2

l:a1d1

l:a4d2

arrow 1 arrow 4
l:a4 r:a4l:a1 r:a1

(a-1) critic (a-2) actor

(b-1) No. 15 (b-2) No. 10 (b-3) No. 13 (b-4) No. 11

(c-1) No. 7 (c-2) No. 6 (c-3) No. 49 (c-4) No. 62

(d-1) No. 103 (d-2) No. 248 (d-3) No. 90 (d-4) No. 272

critic:-0.89 actor:-0.08 critic: 0.95 actor:-1.20 critic:-0.79 actor:-0.96 critic:-0.03 actor:-1.02

critic 2.09 actor:-0.42 critic:-2.20 actor: 0.49 critic: 1.79 actor:-3.00 critic: 0.48 actor:-2.94

critic: 6.59 actor:-1.90 critic:-4.93 actor: 2.66 critic:-2.40 actor: 7.22 critic: 0.67 actor:-10.01

r:a1d1

l:a4d2

r:a1d1
l:a1d1 r:a1d1

l:a4d2

r:a4d2

r:a4d2

r:a1d1

left

right left

left

right

right

left

left

right

r:a4d2

leftleft

right

Fig. 8. The output change of some neurons during one episode for the four cases of right and left arrow No.1 on the Display 1 and the right and left
arrow No.4 on the Display 2. The hidden neurons seem to contribute much to critic or actor by judging from the connection weights. Two values on each
graph indicate the contribution to the critic and actor on the assumption that the transformation in each neuron is linear. The graphs in the left-half are
for the neurons that seem to contribute the critic, and on the other hand, the graphs in the right-half seem to contribute to the actor. No. 10 neuron in the
highest hidden layer (b-2) seems to contribute to both critic and actor. “l:a4d1” indicates the case when the left arrow No. 4 is presented on the Display 1.

displays as shown in Fig. 2. It is also seen that the difference
in output between the arrow directions is not so large at the
initial state, but increases in a couple of steps. That suggests
that an associative memory is formed in the RNN. Actually,
the connection weights between these two neurons are small,
but positive though they were 0.0 initially.

By assuming the transformation of each neuron is linear,
the contribution of each hidden neuron to the critic or actor
can be represented as a value. Fig. 8 shows the output change
of the neurons that seem to contribute the most or the second
most to the critic or actor in each hidden layer together

with the critic and actor output changes. The highest hidden
neuron No. 10 contributes the most to both the critic and
actor, and the case of No. 13 neuron whose contribution to
the actor is the third most is also shown. As for the lowest
hidden layer, since the output of the neuron that contributes
the second most to the critic does not change so much during
one episode, the neuron No. 248 that contributes the third-
most to the critic is shown. The lowest hidden neuron No.
142 that was shown in Fig. 7 is the third-most to the actor,
and the output change is almost the same as the No. 272.

The output change of the neurons in the highest hidden

1450

(a) No.272 (b) No.142 (c) No.90

(d) No.103 (e) No.248 (f) composite

Fig. 9. The change of connection weights to each of some hidden neurons
during learning is visualized as a color image by the linear transforming the
change of each weight to the range from 0 to 255.

layer is smooth and the close to the critic or actor even though
No. 10 and No. 13 contribute to the both. On the other hand,
in the lowest hidden layer, The output change in No. 142 or
No. 272 neurons is similar to the actor, but no neurons that
increase or decrease smoothly like critic are found.

Fig. 9 shows the change of connection weights through
learning in the lowest hidden neurons mentioned above. In
each hidden neuron, the weight changes through learning are
linearly transformed to the range from 0 to 255 at first. Since
the number of connection weights is equal to the number of
pixels of the input image, the weight changes in one lowest
hidden neuron can be visualized as a color image whose
size is the same as the input image. The linear transformation
from each weight value to the corresponding pixel value fc,i,j

that ranges from 0 to 255 is as

fc,i,j = (int)
(

Wac,i,j − Wbc,i,j

maxc,i,j |Wac,i,j − Wbc,i,j |

×127
)

+ 128, (5)

where Wa, Wb indicate the weight after and before RL
respectively, c indicates the color and can be R, G, or B,
and i, j indicate the raw and column number of a pixel in
the image respectively. By this transformation, if the value
of a connection weight increases through learning, the color
of the pixel corresponding to it becomes bright, and if the
value decreased, the color of the pixel becomes dark.

The first three neurons contribute much to the actor, and
the next two contribute mainly to the critic. The first two
images, (a) and (b), are very similar, and the left-half is
almost symmetrical to the right-half, but the color is inverted.
The color yellow is the opposite color of blue. The system
seems to extract the arrow direction from the image at the
initial state in each episode. At the pixels that are blue for
all the four right arrow patterns and are white for all the four
left arrow patterns, which are around the head of the right
arrow, the color is strong yellow, and around the head of the
left arrow, the color is strong blue. That is a reasonable to
detect the arrow direction. Furthermore, yellow right arrow
No. 1 and blue left arrow No. 1 are ambiguously seen. Fig.

9 (f) shows the composite image of average over four left
arrow patterns and the color-inverted image of the average
over four right arrow patterns. It is similar to (a) or (b). The
composite of an arrow pattern and the color-inverted image
of the same arrow with the other direction is thought to be
helpful to eliminate the effect of the lighting condition. It
is also known that the neuron detects the arrow direction
considering many pixels in parallel. One more thing we can
notice is that the left part of the image is reddish and the
right part is cyanic that is the opposite color of red. That is
thought to discriminate whether the red circle appears on left
side or the right side of the camera image, and to contribute
to moving left when the red circle appears on the left side,
and moving right when it appears on the right side. The red
circle comes from the left side when a left arrow is presented
and the camera moves to the left. It is thought that to realize
the same actor output, the neuron got to recognize both the
arrow direction and the place where the red circle appeared.

From the image of the neuron No. 90 (c), it seems to detect
the right arrow No. 3 or No.4, that matches the graph in Fig.
8(d-3). As for the neuron No. 103 and 248, which contributes
much to the critic, it seems difficult to give appropriate
explanation. Anyway, since there are many other neurons
processing in parallel, and one neuron makes multiple roles
in parallel like the neuron 272 or 142. it is impossible to
understand the entire process of the neural network. It is
similar to the situation that we try to understand our brain
exactly that is a massively parallel and flexible system.

Finally, generalization ability is examined by checking the
performance for the test arrow patterns that are not presented
in learning. Table II shows the number of steps to the goal
state for each arrow pattern for the presentation on each of
the Display 1 and Display 2. Fig. 10 shows the critic, actor
and the lowest hidden neuron No.272, which is considered
to memorize the arrow direction, for all the combinations
of arrow pattern, direction and presented display including
the learning patterns. In all the patterns except for the case
of right arrow No. 9 on the Display 1 (r:a9d1), the camera
reached the correct goal even though the number of steps is
sometimes more than 20 for the case of right arrow. Except
for the failure case, the actor value is positive for the right
arrows, while it is negative for the left arrows.

The lowest hidden neuron No.272 also discriminates the
arrow direction and keeps it even after the arrow pattern
disappeared except for the failure case. In the cases in which
more steps than the others are necessary to reach the goal
state, which are r:a5d2, r:a6d1, r:a6d2, the neuron takes a
value around 0.0 at first. Therefore the actor value is not so
large, and so it takes more steps to the goal. However, the
neuron is entrained gradually, and finally it converges around
a large negative value. In the failure case, the neuron output
converged to the incorrect value at first and then kept it for
a while. The camera motion for the failure case is shown in
Fig. 11. The camera moved to the left (incorrect) direction
until it caught a part of the green ×-mark. When it caught
the green ×-mark at around the 13th step, the hidden neuron

1451

TABLE II
THE NUMBER OF STEPS TO THE GOAL FOR EACH ARROW PATTERN-
DIRECTION PAIR. THE TWO NUMBERS INDICATE FOR THE CASES OF

PRESENTATION ON THE DISPLAY 1 (LEFT) AND DISPLAY 2 (RIGHT).
× INDICATES THAT THE SYSTEM FAILED TO REACH THE GOAL. THE

ARROW PATTERNS FROM NO.5 TO NO.11 WERE NOT USED IN LEARNING.

(e)arrow No.5 (f)arrow No.6 (g)arrow No.7 (h)arrow No.8

(i)arrow No.9 (j)arrow No.10 (k)arrow No.11

(a)arrow No.1 (b)arrow No.2 (c)arrow No.3 (d)arrow No.4

14 14 13 14 13 14 13 14

14 1514 1614 2614

14 13 14 14 14

16

15 14 14 14 14 14 14 14

16 19 15 20 15 17 16 16

15 16 14 14 16 15

0 5 10 15

0.0

0.5

o
u
tp

u
t

number of steps
20

-0.5

r:a9d1
r:a6d2

r:a5d2

r:a6d1r:a9d2

0 5 10 15

0.5

1.0

o
u
tp

u
t

number of steps
20

0.0

r:a9d1
r:a6d1

0 5 10 15

0.0

0.5

o
u
tp

u
t

number of steps
20

-0.5

r:a9d1

r:a6d2

r:a6d1

(a) critic (b) actor

(c) lowest hidden 272

Fig. 10. The change of critic, actor and the lowest hidden neuron No.
272 during one episode for all the combinations of arrow directions, arrow
patterns and presented displays. The system failed only for the case of right
arrow No. 9 on the Display 1 (r:a9d1, red thick line).

output suddenly went down to the large negative value, and
actually it moved to the right direction. However, the actor is
not so large, and when it caught the tail of the arrow pattern
at around the 25th step, it went to the left direction again. The
reason of the failure might be that in the case of the pattern
No.9, the distance to the average of four learning patterns of
the same direction is not so different from the distance to the
average of four learning patterns of the opposite direction,
and furthermore, and as can be seen in Fig. 11, the initial
position of the camera was slightly biased to the left direction
unintentionally.

IV. CONCLUSIONS

Only through reinforcement learning with a reward at
a goal state and a penalty at a non-goal state, a system
with a real movable camera and a recurrent neural network

step 1 step 4 step 7 step 10 step 13

step 16 step 19 step 22 step 25 step 28

step 31 step 34

0 10
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

-0.5

a
c
to

r
o
u
tp

u
t

c
ri

ti
c
 o

u
tp

u
t

number of steps

number of steps

(b) critic output (c) actor output

(a) a series of images

step 37 step 40

20 30 40

0 10 20 30 40

Fig. 11. The change of captured image by the camera motion and the
change of the critic and actor outputs when the right arrow No.9 is presented
on the Display 1.

discovered that the arrow direction is important, and acquired
the recognition of the direction from 1,560 visual signals.
The system also got to memorize the recognized arrow
direction and to move the camera to the correct direction
even after the arrow disappeared out of the visual field.

Introducing a small random shift of the initial arrow
location made the learning difficult. Furthermore, the way
of exploration seems inefficient. Some improvements are
required.

REFERENCES

[1] R.A. Brooks, “Intelligence without Representation,” Artificial Intelli-
gence, vol. 47, pp. 139-159, 1991.

[2] K. Shibata, “Emergence of Intelligence Through Reinforcement Learn-
ing with a Neural Network,” Advances in Reinforcement Learning
(Open access) Intech Open Access Publisher, 2011.

[3] B. Bakker, F. Linaker, J. Schmidhuber, “Reinforcement Learning in
Partially Observable Mobile Robot Domains Using Unsupervised Event
Extraction”, Proc. of IROS 2002, Vol. 1, pp. 938?943, 2002

[4] B. Bakker, et al., “A Robot that Reinforcement-Learns to Identify and
Memorize Important Previous Observations,” Proc. of IROS 2003, pp.
430-435, 2003.

[5] A. Onat, H. Kita, and Y. Nishikawa, Q-Learning with Recurrent Neural
Networks as a Controller for the Inverted Pendulum Problem. Proc. of
ICONIP 98, 837-840 (1998)

[6] Utsunomiya, H. & Shibata, K. (2009). Contextual Behavior and Internal
Representations Acquired by Reinforcement Learning with a Recurrent
Neural Network in a Continuous State and Action Space Task, Advances
in Neuro-Information Processing, LNCS, Vol. 5506, pp. 755-762

[7] Goto, K. & Shibata, K. (2010). Emergence of Prediction by Reinforce-
ment Learning Using a Recurrent Neural Network, J. of Robotics, Vol.
2010, Article ID 437654

[8] A.G. Barto, et al., Neuronlike Adaptive Elements That can Solve
Difficult Learning Control Problems. IEEE Trans. of SMC, Vol. 13,
pp.835-846, 1983.

[9] D.E. Rumelhart, et al., “Learning Internal Representation by Error
Propagation,” in Parallel Distributed Processing, 1986.

1452

