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Abstract—In this paper, a novel concept is proposed where
exploration, which is essential in reinforcement learning, is
considered to be one aspect of the motions generated by the
learner’s internal dynamics and is expected to develop through
learning towards more purposeful higher dynamic functions such
as “thinking”. To realize such a concept, a chaotic neural network
is introduced for generating motions with exploratory factors that
are derived from the internal chaotic dynamics without adding
external random noises. Effective exploration is expected based on
the dynamics called ‘‘chaotic itinerancy”, which is also expected
to be the key to learning higher dynamic functions more easily
that require both stable and transitive dynamics. This paper also
proposes a reinforcement learning method without any external
random noise, using the temporal difference (TD) error of the
state value and the contribution trace of each input to the output
increase in each neuron. It was confirmed in a simple learning
task that by using a chaotic neural network, an agent could
explore in accordance with the internal chaotic dynamics and
could learn goal-directed behaviors. The proposed framework
seems promising to explain the emergence of higher intelligence
in real lives and also to develop human-like intelligence though
there are many remaining problems to be solved.

I. INTRODUCTION

From the viewpoint of “emergence of intelligence”, rein-
forcement learning seems promising due to its autonomous
learning ability based on the learner’s own trial and error, and
its function emergence property when used with a recurrent
neural network [1]. In order to realize such trial and error,
the use of stochastic exploration that needs a random number
generator has been taken for granted. In cases with discrete
action generation, one action is chosen stochastically using
the learner’s outputs, such as e-greedy or Boltzmann selection
using Q-values [2]. While, in cases with continuous motion
generation, a motion is picked according to the probabilistic
distribution determined by the learner’s outputs such as the
actor outputs in Actor-Critic [2][1] as shown in Fig. 1.

Our group has been questioning the conventional explo-
ration from the following points. 1) In humans, exploration
seems far more intelligent. When we meet a fork in a road, we
do not stochastically move each of our actuators independently
as shown in Fig. 2, but do so intelligently, choosing to go down
one of the two roads behind the fork. That needs sophisticated
integration of many actuators’ motions. 2) Does each real life
have an independent random number generator used only for
stochastic exploration? 3) What should the basis be for adjust-
ing the ratio of exploration and exploitation autonomously?
4) Exploration is influenced by the control interval (cycle).
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Fig. 1. The stochastic selection of continuous motion in reinforcement

learning. It is equivalent to the addition of external random numbers to the
actor outputs.

Fig. 2. Fork Problem: Adding a random number to each motion command
is not an effective method to explore which way a robot should go at a fork.

Although the same level of random noises is added, if the
control interval becomes 10 times longer, the exploration is
completely different. From the above, the development of
smart exploration in autonomous learning systems has been an
enduring desire. We showed that a system using reinforcement
learning with a recurrent neural network acquires intelligent
exploration behaviors [3][4], but a random number generator
for stochastic exploration was still required.

On the other hand, it is well known that chaotic dynamics
have the ability to realize effective exploration. Many works
have been conducted for a long time, but the ability has mainly
been investigated in the field of associative memory. Several
works have tried to use a chaotic sequence in reinforcement
learning on behalf of a random number generator [5][6] as
shown in Fig. 3(a). However, the chaotic sequence generator
is still located outside of the action generator.
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Fig. 3. Two conventional uses of chaos in learning and the proposed method.

Arie et al. proposed a learning system with a chaotic neural
network (CNN) connected with a regular recurrent neural
network (RNN) as shown in Fig. 3(b). It explores a novel
goal-directed sequence as a combination of the given primitive
sequences by varying the initial states of the CNN, with the
expectation that it is sensitive to its initial conditions [7]. It is a
pioneering work from the viewpoint of an internal-dynamics-
based exploration produced by the combination of both net-
works. However, the RNN learns primitive sequences given
by a human tutor in advance, and the CNN is not expected
to generate motions, but instead only varies the sequence.
Furthermore, the system explores off-line and chooses the best
one. Those suggest the underlying concept that exploration and
motion generation are completely different.

In this paper, the authors present a novel idea that explo-
ration is one aspect of the internal dynamics formed within
the motion-generating (actor) network itself, and the dynamics
develop through learning resulting in higher dynamic functions
such as ‘thinking’ as shown in Fig. 4. In other words, ‘explo-
ration’ and ‘thinking’ are both treated along the same line
of “internal dynamics”. Learning takes in useful dynamics to
obtain rewards, such as the cause and effect of the world,
and grows the dynamics from ‘exploration’ to ‘thinking’, but
when the learner meets an uncertain or unfamiliar situation, the
dynamics return to ‘exploration’. The dynamics of ‘thinking’
need both stability in a state and transition between states.
These two demands seem to be contradictory at first glance,
and it is difficult to learn their coexistence from scratch [8].

Chaotic dynamics seem to meet the above requirements.
Especially, “chaotic itinerancy” [9] can be considered to be the
origin of effective exploration at the fork as well as thinking
dynamics. Chaotic dynamics build a bridge from “exploration”
to “thinking”. Chaotic transitory phenomena are observed
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Fig. 4. “Thinking” is developed from “exploration” on the line of “internal
dynamics” through learning.

experimentally in real biological lives, and the difference
between the dynamics for known and unknown stimulus was
also observed [10]. Similar results can be seen in a simulation
using a chaotic neural network, which can also learn unknown
input patterns to be known patterns [11]. After the learning of
a state sequence that changes stochastically using a recurrent
network, chaotic dynamics were observed in it [12]. They are
interesting for demonstrating the possibility that the purposeful
control of chaotic dynamics can be acquired through learning.

According to the above discussion, the authors propose to
use a chaotic neural network (CNN) for motion generation,
and to train that CNN through reinforcement learning as
shown in Fig. 3(c). Thanks to its internal chaotic dynamics,
the learner can generate exploratory behaviors without any
external random noise, and the dynamics are expected to
change purposefully through learning.

However, there is one serious problem. Conventional re-
inforcement learning uses the correlation between the given
perturbations or noises and the resulting change in the state
or action value. It can be realized because a perturbation that
is added from the outside of the action generator can be ex-
plicitly isolated from the original action or motion commands.
However, in the proposed system, exploration is generated as
a function of the internal dynamics, and the perturbations and
motion commands are originally inseparable. In this paper, by
focusing on the temporal difference (TD) error of the state
value and the contribution trace of each input to the output
increase in each neuron, a novel and simple reinforcement
learning algorithm based on the explorations generated by the
internal dynamics of a CNN is proposed.

Here, in the initial step for this big paradigm shift, it is
confirmed in a simple task whether reinforcement learning
using a CNN works without any external random noise.

II. REINFORCEMENT LEARNING USING A CHAOTIC
NEURAL NETWORK

Here, actor-critic [2] is employed as a reinforcement learn-
ing architecture considering that the actor outputs can be sent
directly to the motors as continuous motion commands. In
conventional reinforcement learning using a neural network,
one motion is decided on stochastically by adding an external
random noise to each actor output as shown in Fig. 5(a).
Each connection weight is updated by back propagation [13].
The error at each output neuron is the product of TD error
and the random noise. In the proposed learning system, a
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Fig. 5. Comparison of conventional reinforcement learning with external

perturbations and proposed reinforcement learning with internal-dynamics-
based explorations using a chaotic neural network.

chaotic neural network (CNN) generates the motions of the
learner working as the actor as shown in Fig. 5(b). The
learner explores according to the internal dynamics of the CNN
without any random noise from the outside as mentioned.

A primary concern will be what type of CNN is used
and what parameters are chosen for good exploration and/or
for good learning of dynamics. However, here, this research
focuses on confirming whether reinforcement learning works
or not. Therefore, the type of CNN and the parameters used
are not investigated systematically. It has two layers except
for the input layer, and 50 neurons are connected with each
other in the hidden layer. In a CNN, a refractory period is
often introduced in each neuron [14], but here, for simplicity,
regular static neurons are used and produce chaotic dynamics.
The gain of the sigmoid function that is used as the activation
function in each hidden or output neuron is 7.0, and the value
ranges from —0.5 to 0.5. Each of the hidden neurons computes
the internal state from the inputs and the previous outputs of
the hidden neurons as
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where superscript (1) and (2) indicate the input and hidden
layers respectively. uft) is the internal state of the j-th neuron

in the hidden layer of the CNN at time ¢, and w](i) is the
connection weight of the j-th hidden neuron for the connection
from the i-th input, og}t) is the i-th input of the CNN at time

t. wg’)j’i is the weight for the feedback (mutual) connection

from the ¢-th hidden neuron, and 05-22_1 is the output of the

i-th hidden neuron at time ¢ — 1. The output neuron computes

the internal state as
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where superscript (3) indicates the output layer. The output of
each neuron is computed from the internal state as
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where [ is the layer number and g is the gain of the sigmoid
function, set to 7.0. The network is a simple recurrent neural
network, but the large feedback connection weights (£1.5)
and the large gain in sigmoid function enable the generation
of chaotic dynamics.

We consider that the critic output should be generated in the
same network at last, but here, at first, there is another neural
network for critic. It is a regular layered neural network with
the same inputs as the CNN and generates only critic output.
It has no connections between the hidden neurons, and the
sigmoid function, whose gain is 1.0 and value ranges from
—0.5 to 0.5, is used as the activation function of each of the
neurons in the network including the output neuron.

The critic network is trained in the same way as the
conventional one. The training signal r..;;. is generated
based on temporal difference (TD) learning as

treritict = YOcritic,t+1 T Tt41 = Tt + Ocpitic,t 4)

where v is a discount factor, ocritic,t+1 1S the output of the
critic network at time ¢ + 1, ryy is the given reward at time
t+ 1, and 7; is the TD error as

Tt = YOcritic,t+1 T Tt4+1 — Ocritic,t- (5)

Here, since an episodic task is assumed, when the learner
reaches the goal, the training signal is set as

trcriticﬁ, =Tt, (6)

and the episode is terminated. All the connection weights in
the critic network are updated based on the ordinary back
propagation [13] using the above training signal.

The learning method of the actor CNN is completely
different from the conventional one, and is proposed here for
the internal-dynamics-based exploration. All the connection
weights in the actor CNN, except for the mutual feedback
connections between the hidden neurons, are updated using
the TD error 7 as

Aw](lzt = nftcﬁg’t @)
where Awyzt is the weight update for the connection from the
i-th neuron in the (I—1)-th layer to the j-th neuron in the [-th
layer. cglzt is the trace of correlation between the input from
the i-th neuron in the (I—1)-th layer and the output change



in the j-th neuron in the [-th layer. Written in the continuous
time domain, the trace cglzt is updated (s)imply according to
l

the infinitesimal change in the output do; " as
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and written in the discrete time domain, it is updated at each
time step as

Cngt =(1- |A0§'l,7)5 )C§fg,t—1
where Ao(-l,)s = o;lz - 05-1271. The trace is designed to represent
and hold ‘the contribution of the corresponding input to the
increase in the neuron output. When the TD error is positive,
the weights are updated on the basis of promoting the output
change that has contributed to reach the present output value
in each neuron, while, when the TD error is negative, they are
updated on the basis of diminishing the output change.
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One major difference from conventional learning is that
there are no error signals propagated backward. For each
hidden neuron, the input signals are the same as any other,
but the traces c;; are different among the hidden neurons,
and that enables learning without error propagation. However,
further investigation is necessary for this point hereafter.

The authors believe that acquisition of useful dynamics
through learning is very important, and one of the advantages
to introducing a CNN into reinforcement learning is to reflect
the learned dynamics into the chaotic dynamics. However, for
simplicity, the weights of the mutual connections between the
hidden neurons in the CNN are not learned here.

III. SIMULATION

In this section, it is examined that the proposed learning
works in a simple task. As shown in Fig. 6, there is a 22x22
field, and an agent is placed at random with its center located
within the 20 x 20 area in the field at the beginning of each
episode. The agent moves, and when its center reaches the
circle within a diameter of 2.0 at the center of the field, 0.4 is
given as a reward. Otherwise, no reward or penalty is given.
The episode is terminated when it either reaches the goal, or
fails to do so in 30,000 steps. There is a visual sensor that has
11 x 11 visual cells, each of which has a 2x 2 receptive field,
and covers the whole the field without any overlap between
cells. The size of the agent is also 2x 2, and each visual cell
outputs the area occupied by the agent in the cell. If the agent
image fits just one of the cells, the corresponding signal is 4.0,
and all the other signals are 0.0. The 121 signals from the cells
are sent to both networks as inputs.

Two outputs are generated in the actor CNN, and the agent
moves accordingly. Each of the two outputs is responsible
for the = or y direction. After every 5,000 episodes, the
environment changes and the responsible direction for each
output is swapped. Each output works as acceleration as

Vet =090, 41+ oﬁ?ﬂ’t (10)
Vgt = 0.90,-1 + 0501, (11)

where v, ; and v, ; are the speed in the direction of z and y
respectively, but their range is limited; -1.0 to 1.0. However,
to make the maximum speed to be a constant value that is not
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Fig. 6. Task, learner’s architecture and signal flow.
TABLE 1. PARAMETERS USED IN THE SIMULATION.
Actor CNN | Critic NN

Number of Layers 3 3
Number of Inputs 121 121
Number of Hidden Neurons 50 30
Number of Outputs 2 1
Gain of Sigmoid Function 7.0 1.0
Value Range of Sigmoid Function -0.5-0.5 -0.5-0.5
Learning Rate Output <- Hidden 4.0 4.0

Hidden <- Hidden 0.0 -

Hidden <- Input 0.4 4.0
Initial Weights | Output <- Hidden +0.1 0.0
(range of Hidden <- Hidden |  +1.5
random numbers)

Hidden <- Input +0.1 +0.1
Discount Factor ¥ 0.98
Reward at Goal » 0.4

dependent on the direction of the agent’s motion, the velocity
is normalized by the maximum speed for the direction as

locg t = locg t—1 + Vgt /maz_ve (12)
locyr = locy 11 + vyt /maz_v, (13)

where max_v; is the maximum possible speed for the direction
at time ¢. For example, when one of v, and vy, is 0.0, maz_v =
v1.02 +0.02 = 1.0, and when v, is equal to Vy, MAT_v is
V1.02 + 1.02 = /2. When it collides with the wall at the
boundary of the field, it stops at the location, and v, and v,
are reset to 0.0. No penalty is imposed. The agent motion is
dynamic, but there are no inputs for the agent to know the
velocity, thus causing perceptual aliasing. Table I shows the
parameters used. When the nu}nber of steps in each episode
becomes so large that 0.1255%» is larger than the discount
factor ~, the factor is set to 0.1255% temporally so as that
the critic value does not become too small through learning. As
previously mentioned, these parameters were not finely tuned.

Learning was conducted for 20,000 episodes in each simu-
lation run, and 20 simulation runs were performed with varying
initial connection weights. The following result is the best out
of the 20 runs. There were no episodes in which more than
2,000 steps were taken for the agent to reach the goal even
though the environment changed after every 5,000th episode.
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Fig. 7. As a learning curve, the mean of the one-step moves in the goal
direction over 200 test episodes is plotted. The used actor CNN was saved
at the episode shown in the lateral axis. The environment where the agent
moved changed after every 5,000th episode, and the test was performed for
both environments: Env. 1 and Env. 2.

Figure 7 shows the learning curve. The actor CNN was
saved after the number of episodes of learning indicated by
the lateral axis, and the mean of the one-step moves in the
goal direction over 200 test episodes using the saved network
is plotted. At each test episode, the agent was located on one of
the 200 points that uniformly divide the circle, whose radius is
9 from the center. If the agent did not reach the goal within 100
steps during the test episode, the episode was terminated. Each
of the two lines in the figure shows a case in the environment
1 or 2. The moves did not reach the optimal level with no
exploration, but it can be seen that the agent learned to reach
the goal in the learning environment. After the environment
changed, the agent learned its motion even though no random
exploration was done. In the environment where the agent was
not learning at the time, the move was negative, or in other
words, the agent was at a position further from the goal after
100 steps.

Each figure in Fig. 8 shows the trajectories in eight test
episodes from different starting locations using the actor CNN
after some episodes of learning. When the agent could not
reach the goal in 100 steps, the trajectory for the first 100
steps is shown. It can be seen that before learning: (a), the
agent moved around according to the chaotic dynamics, and
in three of the eight episodes, it reached the goal. Even in the
other five episodes, it reached the goal in 2,000 steps. After
200 episodes of learning:(b), a tendency to go to the goal can
be seen, and in all the eight episodes, the agent reached the
goal in 100 steps. After 5,000 episodes of learning: (c), the
agent reached the goal in smaller steps though it sometimes
took a roundabout route. Using the same CNN, the agent is
put in the environment 2 where the responsible direction of
the actor outputs is swapped from the environment 1: (d), the
agent went around the bottom right or top left corner of the
field. It moved around to some extent, but could not reach the
goal even after 30,000 steps. However, when the agent learned
during test episodes, it reached the goal within 3,000 steps
from any of the eight starting locations. After 5040 episodes:
(e), the agent had learned 40 episodes in environment 2, and
it reached the goal from any of the eight starting locations
within 100 steps. Finally, after 10,000 episodes: (f), the agent
could reach the goal in 10 to 12 steps though the optimal step
is nine.
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Fig. 8. Changes in the agent trajectories from the 8 test locations using the
saved CNN. The environment in which the agent learned changed every 5,000
episodes. In the cases of (c) and (d), the used CNN was saved just before the
environment changed from 1 to 2 during learning. In the case of (f), the used
CNN was saved just before the environment changed from 2 to 1. The larger
and thicker marks indicate the agent’s starting locations.

In Fig. 9, the output changes in the two output neurons and
six hidden neurons in one episode from a start location (19.0,
15.0) for three of the six cases in Fig. 8 are shown. Note
that Fig. 9 (a) and (c) show the output change for the first
10 steps, while Fig. 9 (d) shows those from the 91st through
100th steps. Before learning: (a), the two actor outputs changed
their value often within the non-saturation region where the
value is neither very large nor very small. The outputs of the
hidden neurons went back and forth between around 0.5 and
around -0.5. That is because the initial weights of the mutual
connections between the hidden neurons are large. After 5,000
episodes of learning, (c), as shown in the top graph, the critic
output got to represent the state value even though it is slightly
smaller than the ideal curve computed from the discount factor.
It can also be seen that the actor outputs took the value of 0.5
or -0.5, and rarely changed. The hidden neurons changed their
values, but not so often as in the case in (a). However, in the
environment 2, where the responsible directions of the two
actor outputs were swapped: (d), using the same CNN as (c),
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Fig. 9. Changes in the two actor outputs and first six hidden outputs for 10
steps in one episode in three of the six cases in Fig. 8. In the case of (c), the
critic is also plotted to show the critic learned. In either case, the agent starts
at (19.0, 15.0). In the cases of (a) and (c), the outputs in the first 10 steps are
plotted, but in the case of (d), the outputs from the 91st to 100th are plotted
to see the agent’s state after some time from start without reaching the goal.

the agent went to the bottom right corner of the field as seen
in Fig. 8 (d). It can be seen that the hidden outputs changed
more often from the 91st to 100th step than in the case of (c).
That must help to generate more exploratory behaviors.

As an index of exploratory behaviors, the Lyapunov ex-
ponent, which shows the sensitivity to small perturbations,
was observed in the actor CNN. Here, 200 test episodes are
performed as before. At each step in the 200 test episodes,
a random vector whose size is 1072 is added to the internal
states of the 50 hidden neurons in the actor CNN, and after one
step, the distance of the hidden states from the case when no
perturbation is added was observed for the both environments.
The expanding ratio of the distance is averaged as

Episode Step(e) )

1
)\ = Episode Z Z l

Ze:l Ste p e=1 t=1

where d(e,t) is the Euclidean distance of the states in the
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Fig. 10. Change in the Lyapunov exponent during learning for both
environments, one is where the agent learned and the other is the agent did
not learn at that episode.

Environment at the stop of learning
Env.1 | Env.2 Env. 1 Env. 2

=
O 1M
=
Q
fo T Y A R ol S
%
o
> 09l-—Whha Vi, /T T D
=]
g
3
g
AN DRSNS U Al D B0,
A
0 ’0‘].4 | | |
0 5,000 10,000 15,000 20,000
Episodes
Fig. 11. Change in the Lyapunov exponent for only the first 4 steps after
each start.

hidden neurons at time ¢ when the distance 10~2 is given at
t—1 in the e-th episode, Episode is the number of episodes in
the test, which is 200 here, and Step(e) is the number of steps
to reach the goal in the e-th episode. In this paper, this value
is called Lyapunov exponent. Note that the dynamics are not
only produced by the feedback connections in the actor CNN,
but also by the loop of motion and perception of the agent.

Figure 10 shows the change in the Lyapunov exponent
during learning in each environment; the environment where
the agent was either learning or not learning during the
episode when the CNN was saved. It is interesting that in
the environment where the agent was learning, the exponent
became small according to the progress of learning, while
it did not decrease so much when the test was done in the
environment where the agent was not learning. Those match
the output fluctuations in hidden neurons as shown in Fig.
9. It is also interesting that, after the environment changed,
the exponent for the previous environment became large soon.
When the exponent is observed in only the first four steps after
the start, the exponents change as shown in Fig. 11. It must
take some steps for the agent to perceive that the environment
is unexpected. The exponent for “not-learning” environment
decreased more than that in the case of Fig. 10 though the
exponent is different slightly between “learning” and ‘“not-
learning” environment even in 4 steps. The cause behind these
results should be investigated further.

Next, it is shown how the connection weights in the actor
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Fig. 12. Changes in several connection weights in the actor CNN.

CNN changed during learning. Fig. 12(a) shows the changes
to the maximum or minimum (greater negative) weights after
learning for each output neuron. Fig. 12(b) shows that of the
Ist and 2nd maximum and minimum weights from inputs in
the hidden layer after learning. Probably because the learning
rate is greater in the output layer than in the hidden layer, the
absolute value of the weights are larger in the output layer,
and change a lot when the environment where the agent was
learning changed after every 5,000 episodes. On the other
hand, the weights in the hidden layer are apt to increase or
decrease gradually. It can be thought that the changes in the
connection weights from the inputs during learning resulted in
more stable hidden outputs shown in Fig. 9(c) and the decrease
in the Lyapunov exponent shown in Fig. 10.

IV. COMPARISON WITH THE CONVENTIONAL METHOD

The proposed method was compared with the the conven-
tional reinforcement learning, where external random noises
are added and a feedforward-type network with no feedback
connections was used as the actor network. The gain of the
sigmoid function in every neuron is 1.0. As shown in Table II,
the other parameters were attempted to match those in the
CNN case, but the learning rate and initial weights of the
actor network are different. Note that the parameters were
not optimized systematically, and the performance can be
improved by setting more appropriate ones. As the external
perturbation, a uniform random number is added to each of the
actor outputs with a value range of +0.8, 1.0 or +1.2, that
remained unchanged during learning. For the case of the CNN,
the value range of the initial weights for the mutual feedback
connections between hidden neurons were varied from £0.5,
+1.0, £1.5 or £2.0. A total of seven cases were investigated.

Fig. 13 shows the comparison of the learning performances.
Fig. 13(a) shows the mean moves in the goal direction for
one-step during learning. The mean value was computed after
each 20 episodes at first, and then that value was averaged over

TABLE II. PARAMETERS USED IN THE SIMULATION FOR EXAMINING

THE CONVENTIONAL METHOD.

Actor CNN | Critic NN
Number of Layers 3 3
Number of Inputs 121 121
Number of Hidden Neurons 50 30
Number of Outputs 2 1
Gain of Sigmoid Function 1.0 1.0
Value Range of Sigmoid Function -0.5-0.5 -0.5-0.5
Learning Rate | Output <- Hidden 40.0 4.0
Hidden <- Input 40.0 4.0
Initial Weights | yput <- Hidden 0.0 0.0
(range of -
random numbers)| Hidden <- Input +0.1 +0.1
Range of Random Numbers +0.8-+1.2 -
Discount Factor ¥ 0.98
Reward at Goal » 0.4
3 1.0
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Fig. 13. Comparison of learning performance among seven cases from the two
viewpoints: (a) mean of the one-step moves in the goal direction to show the
optimality of motions and (b) maximum number of steps in 20,000 episodes
to show the exploration ability. The means and standard deviations are plotted
for each case over 20 simulation runs. [CNN: exploration by the internal
dynamics of a CNN (proposed method), the number indicates the value range
of the initial feedback connection weights.] [Ext RND: exploration by external
random noises, and the number indicates the range of the random noises.]
“*” in the graphs indicates that the agent was stuck at a corner of the field
after the environment changed in two runs and the data are not included.

20,000 episodes. Note that the agent’s motion was influenced
by the random perturbations or chaotic dynamics. The graph
shows the means and standard deviations from the 20 simu-
lation runs with different random number sequences. In the
case of CNN, they were used to decide the initial connection
weights and the agent’s start location for each episode. The
maximum number of steps needed to reach the goal during
20,000 episodes is plotted in Fig. 13(b) as an index of the
exploration ability for the environment change. One episode
was terminated at the 30,000th step when the agent could not



reach the goal. In the case of the conventional method with the
level of random number £0.8, the agent was stuck at a corner
after the environment changed in two of the 20 simulation
runs, and the data are not included in the plot in Fig. 13(b).

When the feedback connection weights in the proposed
method or the random numbers in the conventional method
were large, the exploration factor became large. Therefore,
when they were too large, the optimality became worse in Fig.
13(a), while, when they were too small, the exploration ability
became worse in Fig. 13(b). They have an appropriate size.
The standard deviation in Fig. 13(a) is large in the proposed
method. That is because learning is often unstable depending
on the simulation run. The exploration ability seems better in
the proposed method, but it should be investigated further.

V. EXPECTATION TOWARDS THE EMERGENCE OF
THINKING AND REMAINING PROBLEMS

The proposed idea is completely novel and is highly antici-
pated to learn more complicated and useful internal dynamics.
Among the higher functions, “thinking” seems to be the most
typical one and the most difficult to be achieved. “Reinforce-
ment learning using a chaotic neural network™ opens up a new
way to achieve it through autonomous learning. However, there
are remaining problems as follows.

a. Learning method

The proposed learning method does not require the back
propagation of error signals. That is a very fascinating property
for developing hardwares with parallel processing. However,
since the task in this paper is so simple and actually mutual
connections in the actor CNN were not learned, it is difficult to
say that the method is sufficient to learn complicated dynamics.
The “deep learning” that presently collects attentions for its
ability for abstraction seems to suggest the importance of the
error propagation, especially for the division of roles among
neurons. It is important to examine whether the proposed
method works in even more complicated tasks, especially in
the tasks in which the learning of dynamics is required.

b. Intelligent adjustment between exploration and exploitation

It is expected that, by what has already been learned
being reflected, the dynamics called “chaotic itinerancy” [9]
emerges and intelligent exploration is realized. It should be
examined in such tasks as “the fork problem” mentioned in
the Introduction. It is also expected that when exposed to an
unknown or unexpected situation, the dynamics transition to a
more unstable state and behavior becomes more exploratory.
From these points of view, the change in the Lyapunov
exponent during learning observed in this paper, as well as
the past works [11][12] suggest the possibility.

c. Critic learning

In this paper, the critic is computed in another neural
network, but the authors believe that it should also be learned
in the same network to achieve a higher abstract space in the
CNN. However, it should be examined how the fluctuations
due to the chaotic dynamics influence the learning.

d. CNN model and parameters

The behaviors of a CNN change drastically according to the
model and parameters. What should be done is to know more
about the influence of the type and parameters in a CNN to
exploration and learning, and to choose appropriate ones.

VI. CONCLUSION

It was confirmed that, by using a chaotic neural network,
an agent could explore with internal chaotic dynamics without
adding external random numbers to the actor outputs, and
could learn goal-directed behaviors using the proposed learn-
ing method. In the method, the contribution trace of each input
signal to the output change is computed in each neuron and
the corresponding weights are updated by the product of the
trace and TD error. It is also examined that the sensitivities
to small perturbations decreased for the learning environment
according to the progress of learning. The authors think that it
shows a possibility to control the dynamics rationally through
learning. This is the introduction of a completely novel idea
in reinforcement learning, and is expected to learn and acquire
complicated dynamics that can be called “thinking” as an
extension of the exploration in chaotic dynamics, but there
are many remaining problems to be solved.
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