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Abstract- Recently RBF(Radial Basis Function)-based networks have been widely used because they can learn a strong
non-linear function faster and easily by their local learning characteristics.  Among them, Gaussian soft-max networks
have generalization ability more than regular RBF networks because of their extrapolation ability.  However, since the
RBF-based network has no hidden unit which can represent some global information, the internal representation cannot be
obtained.  Accordingly even if the knowledge which could be obtained through the previous sets of learning is utilized
effectively in the present learning, the network has to learn from scratch.  While, multi-layered neural networks are able to
form the internal representation in the hidden layer through learning.  

The present paper proposes a Gauss-Sigmoid neural network for learning with continuous input signals.  The
input signals are put into a RBF network, and then the outputs of RBF network are put into a sigmoid-based multi-layered
neural network.  After learning based on back-propagation, the localized signals by the RBF network are integrated and an
appropriate space for the given learning is reconstructed in the hidden layer of the sigmoid-based neural network.  Once
the hidden space is constructed, both the advantage of the local learning and the global generalization ability can exist
together.

Keywords- RBF network, Gaussian soft-max network, sigmoid-based neural network, Gauss-sigmoid neural network,
localization, internal representation.

1. Introduction
RBF (Radial Basis Function) networks have been widely
used because of their local learning characteristics.  Local
learning means that the learning for an input pattern
scarcely damages the already trained input-output relations
for the other input patterns which are not close to the
present pattern.  Therefore they can learn faster in general
and can learn a strong non-linear function easily.  On the
other hand, the sigmoid-based neural network sometimes
damages the already trained input-output relations by the
learning for the present input pattern.   On the other hand,
the generalization ability of RBF networks is poor because
of their local learning characteristics, while the sigmoid-
based neural network has a global generalization ability.  
There seems to exist a dilemma between the local learning
and the global generalization at a glance.

To improve the generalization ability of the
RBF network, Gaussian soft-max networks have been
utilized recently as an example[1].  Their extrapolation
ability is well evaluated.  However, since the RBF-based
network does not have a hidden unit which can represent
some global information as shown in Fig. 1, the
reconstructed space cannot be obtained.  When we
control the robot using neural networks, it is expected to
keep the general knowledge in its hidden layer like 3D
spatial recognition that is useful for the robot to deal with
various tasks.  But the Gaussian soft-max network cannot
store the general knowledge and the learning on the
reconstructed space cannot be realized.
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Fig. 1  RBF-based network (RBF network, Gaussian soft-
max network).  There are no hidden layers which
have a unit representing the global information.
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Fig. 2  Gauss-Sigmoid neural network that is proposed in
this paper



In this paper, Gauss-Sigmoid neural network
(NN) as shown in Fig. 2 is proposed.  The activate
function of each unit in the lowest hidden layer is Gaussian,
which localizes continuous input space.  The role of
localization is similar to the visual sensor.  The activate
functions of all the other hidden units and output units are
sigmoid functions.   It is also proposed to modify the
center and size of each Gaussian adaptively together with
the connection weights of the sigmoid units according to
the error back propagation.  The learning performance is
compared among the Gauss-Sigmoid NN, RBF network,
Gaussian soft-max network and sigmoid NN.

2. RBF(Gauss)-based Network  vs.
    Multi-layered Sigmoid-based Neural
Network2.1 RBF network and Gaussian soft-max network
Two types of the popular RBF(Gauss)-based networks
used in this paper are introduced at first.  The first one is
a regular RBF network.  Gaussian is used as a RBF, the
output of the RBF network is written as

output = wi gi(x) + θΣ
i = 1

n

,  where (1)

gi(x) = exp (– (
xd – µi,d

σi,d
)2)Σ

d = 1

D

, (2)

where (µi,1,…, µi,D) : the center of the i-th RBF unit, (σi,d…,
σi,d) : the size of the i-th RBF unit, wi : the connection
weight from the i-th RBF unit, θ : bias, n : the number of
RBF units, D : the number of the input space.  The
weights w are trained by learning, and the center µ and the
size σ of each RBF unit are often also trained by the error
back propagation(BP) learning.  In Gaussian soft-max
network, the output of each RBF unit is normalized by the
sum of all the RBF outputs, and the output of the network
is weighted sum of the normalized RBF outputs as

output = wi bi(x) + θΣ
i = 1

n

,  where (3)

bi(x) = gi(x) / gi(x)Σ
i = 1

n

. (4)

2.2 Learning Speed
As written in the introduction, the learning of the RBF-
based network is fast, since the learning for an input
pattern scarcely damages the already trained input-output
relations for the other input patterns which are not close to
the present pattern. That is because the output of the RBF
unit for the distant input is always close to 0.0.  While,
the sigmoid-based neural network sometimes gives
damages to the already trained input-output relations.
This becomes serious when a strong non-linear function is
approximated by learning.

However, as more RBF units are allocated, the
learning speed becomes slower.  While, the sigmoid-
based neural network is not affected so much by the
number of its hidden units.  In consequences, when a

function, which requires strong non-linearity, is
approximated, RBF network takes an advantage in the
learning speed, while when a function with weak non-
linearity is approximated, sigmoid-based neural network is
better in general.

2.3 Generalization Ability
Different from the regular RBF network, extrapolation
works effectively in the Gaussian soft-max network.  For
example, as shown in Fig. 3, suppose that the input space
has two dimensions, and the training signal in the first and
third quadrants of the input space is 1.0, and in the second
and fourth quadrants, the training signal is –1.0.  Suppose
also that four RBF units are assigned, and the output for
the input pattern α is examined after the learning around
the origin.  By using regular RBF network, the output
becomes close to 0.0 because the input is far from the
center of every RBF unit.   However, by using Gaussian
soft-max network, the output becomes close to –1.0.
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Fig. 3  An example which indicates the extrapolation
ability of Gaussian soft-max network in two
input space using 4 RBF units.
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Fig. 4 An example case in which the generalization is not
effective in Gaussian soft-max network.  In the
non-trained region, it cannot approximate correctly,
while Sigmoid-based network can do.



By the way, when many RBF units are assigned,
interpolation ability is not effective even in Gaussian soft-
max network.  This property is inherited from the regular
RBF network.  For example, as shown in Fig. 4, suppose
that the training signal for region A is 1.0, and for region B
is –1.0, and six RBF units are assigned.  Suppose also
that the network is trained only around the unit A1, A3, B1,
B3.  After the training, the output around the unit A2 and
B2 will not be close to the expected value 1 and –1
respectively.  That is also the reason of slow learning
when the number of RBF units is large.

On the other hand, sigmoid-based neural network
has more strong generalization ability.  That is because
sigmoid function is a global function that divide whole the
input space smoothly into two regions, while the RBF is a
localizing function that picks up a close small region out of
the whole input space.  So by using the sigmoid-based
neural network, the output for the point α in Fig. 3
becomes close to –1.0, and the output around the point A2
in Fig. 4 becomes close to 1.0.

2.4 Internal Representation
In multi-layered neural networks, the internal
representation is formed in the hidden layer, while it
cannot be formed in the RBF-based networks.  Let us see
the example of Fig. 4 again.  Suppose that the input-
output relation has been already trained and the internal
representation has been formed.  Then another output unit
supposes to be assigned to the network with 0.0 hidden-
output connection weights.  When only one input signal
for each region is trained by some training signal, for
example, -1.0 for region A, and 1.0 for region B, all the
outputs in region A are expected to become close to –1.0,
while those in region B are expected to become close to
1.0.  However, in the case of the RBF-based network, all
the outputs have to be trained to obtain the expected values.
The generalization on this internal representation space is
sometimes very useful, especially when we utilize the
neural network for the robot learning.  For example, the
spatial recognition ability is useful for the robot to achieve
many tasks.  If the spatial recognition ability is obtained
as the internal representation through the learning of the
previous tasks, the robot can learn the next task not on the
visual sensory signal space, but on the 3D space that is
reconstructed in the hidden layer from the visual sensory
signal space.  Here this is also called generalization
ability in wide meaning.

2.5 Learning of Discontinuous Mapping
The sigmoid-based neural network is not good at the
approximation of discontinuous mapping from the input
pattern to the output.  When the sigmoid-based neural
network is trained to approximate such a mapping by the
error back propagation(BP) learning, the connection
weights from the hidden layer to the output layer become

very large as well as those from the input layer to the
hidden layer through the learning.  For simplicity,
suppose that a simple 1-1-1 layered network as shown in
Fig. 5 (a) whose output unit has a linear activation function
is trained to approximate the discontinuous mapping.
The output x2 of the network is represented as

x2 = w2 [ f {w1 (x0 +
θ1

w1

)} +
θ2

w2

], (5)

where f(u) : the activation function (sigmoid), w1, w2 : the
input-hidden and hidden-output connection weights, θ1,
θ2 : the hidden and output bias, and x0 : one-dimensional
continuous input signal.  Fig. 5(b) shows the output unit
x2 as a function of the input signal x0.  The derivative of
the output of the network x2 with respect to the input signal
x0 is written as

∂x2

∂x0
= w2 f '(u1) w1, (6)

where u1 : the internal state of the hidden unit.  The
maximum value of f'(u) is not so large, such as 0.25 when
the temperature of the sigmoid function is 1.0 and the
value range is from 0.0 to 1.0.  Then in order to
approximate the discontinuous mapping, w1 or w2 has to be
very large.  However, by the error back propagation
learning, both w1 and w2 become large.  The propagated
error to the hidden layer is amplified by the hidden-output
connection weight w2, and the input-hidden connection
weight w1 and the bias of the hidden unit θ1 suffer sharp
fluctuations.  The bias change is written as

∆θ1 = error w2 f '(u1). (7)

Furthermore, since the boundary of the discontinuous
mapping is approximated as θ1 / w1 from Eq. (5) as shown
in Fig. 5, the approximated boundary moves according to
not only the change of the bias θ1, but also the change of
the connection weight w1.  While, in the RBF-based
networks, the center of each RBF unit is represented by
only one parameter µ.   From these reasons, the
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Fig. 5  A simple sigmoid-based neural network.
Discontinuous mapping is trained on this network.



boundary of the discontinuous mapping approximated by
the sigmoid-based neural network changes radically and as
a result, the learning becomes unstable.

It is reported that the combination of
reinforcement learning and neural network sometimes
leads instability[2].  This originates from the fact that a
reinforcement learning task sometimes requires a
discontinuous mapping like the "mountain car problem" in
[2].  We compared the reinforcement learning using a
neural network between two types of input signals.  The
task is that the mobile robot with two visual sensors each
of which has one-dimensional array of visual sensory cells,
reaches a target object.  The first type of input signals is
direct visual input signals and the second one is a relative
object location which is projected on the visual sensor.
The direct visual signal can be considered as the localized
signal of the object location.  We have shown that the
learning is fast and stable in the case of visual input signals
from the simulation[3].  We have also shown that the
region where a discontinuous mapping is required is
magnified in the hidden layer in the neural network after
reinforcement learning[4].  From the simple example of
supervised learning when the visual sensory signals are the
input and the object location is the training signal for the
output of the network, the visual sensory space is
reconstructed on the hidden layer and the smooth internal
representation corresponding to the object location can be
obtained through learning[5].

From these results, the localization is useful to
learn the discontinuous mapping.  The reason can be
thought that a special region of the input space can be
easily magnified by adjusting the input-hidden connection
weights which come from only the corresponding region.
And the magnification of the region (large input-hidden
connection weight w1 in Eq. (6)) around the discontinuous
mapping makes the learning stable.  Moreover, it may be
another reason that the localization of the input space is
not changed during learning.

3. Architecture of Gauss-Sigmoid Neural Network
From the above discussion, it is the best way to localize
the continuous input space into some regions by using
Gaussian, in which the location of each Gaussian is
represented by only one parameter µ (center), and then the
localized signals are dealt with by sigmoid-based multi-
layered neural network.  Now the Gauss-Sigmoid neural
network is proposed
1. to achieve a high learning speed even in approximating

a strong non-linear function,
2. to achieve a strong generalization on the internal

representation space, and
3. to be stable even in the learning of discontinuous

mappings.
The architecture is shown in Fig. 2.  When the center and

the size of the RBF unit is trained, the learning rate for this
parameter has to be very small to keep the stability in the
learning.

4. Simulation
In this section, the ability of each network is compared by
simulation.  Here the input space has two dimensions and
the distribution of the training signal is as shown in Fig.
7(a).  The training signal on the stripe and circle region is
0.4 and that on the other space is –0.4.  The value range
of sigmoid function is from –0.5 to 0.5.  The learning of
the stripe region is easy for the sigmoid-based neural
network, while the learning of the circle region is easy for
the RBF-based network.  The number of the Gaussians of
the Gauss-Sigmoid neural network(NN) is 9 or 36, and that
of the RBF network or Gaussian soft-max network is 36.
The number of parameters in the Gauss-Sigmoid NN with
9 RBF units is almost equal to that of the RBF network or
Gaussian soft-max network.  The number of the units in
each layer of both the Gauss Sigmoid NN and the Sigmoid
NN is 2-9(36)-10-4-1.  The learning rate for each network,
that is chosen through trial and errors to minimize the final
error, is as shown in the column (a) in Table 1.  The
initial hidden-output connection weights are 0.0, and the
other connection weights are small random numbers.
The initial center of each RBF unit is decided so as that the
input space is just covered by all the units and the size σ is
decided to be equal to the distance to the closest neighbor
units.  When the number of RBF units is 36, the center
and size of each unit are as in Fig. 8 (a).  Input pattern is
chosen randomly at each step.  The learning rate is
reduced to one tenth after 50000 steps.  Furthermore, at
80000 steps, all the hidden-output connection weights are
reset to 0.0, and the training signal is inverted from –0.4 to
0.4 and from 0.4 to –0.4.

Fig. 6 shows the comparison of the learning
curve that is the average of ten trials.  The vertical axis
indicates the sum of the square of the difference between

Table 1  Learning rate for each network

Network simullation 1 simullation 2

Gauss-Sigmoid
network

sigmoid

gaussian

RBF 
network gaussian

linear

Gaussian Soft
Max network gaussian

linear

Sigmoid-based
NN

0.3

0.001

0.05

0.05 0.05

0.05

0.3

0.001

0.01

0.010.02

0.0003

0.2 0.2
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the output of the network and the training signal at 776
input signals on the 26x26 lattice.  In the very early stage
where we cannot see from the figure, the error was reduced
fastest in the RBF network.  The Gauss-Sigmoid NN is
also better.  It is known from the figure that the learning
is the slowest in the sigmoid-based NN, and the Gauss-
Sigmoid NN with 9 RBF units is the next slowest.  But
after some steps, the error was not reduced enough in the
RBF network and reduced gradually in the sigmoid-based
NN and the Gauss-Sigmoid NN with 9 RBF units.  When
the training signals were inverted, the error of every
network becomes large.  Then the error was reduced
slowly in the RBF network and the Gaussian soft-max
network, while fast in the sigmoid-based NN and the
Gauss-Sigmoid NN.  This indicates that the internal
representation in the both networks works effectively.
The order of the network with respect to the final error is
Gauss-Sigmoid NN with 36 units, Gauss-Sigmoid NN with
9 units, Gaussian soft-max network, sigmoid-based NN
and then RBF network.  The reason why the sigmoid-
based NN is not unstable even if the approximated
function includes discontinuity is that the learning rate for
the network is small enough, and so the learning speed is
very slow.

The next simulation was performed to show the
effectiveness of the internal representation,.  At first, each
network is trained by the same training signal as the
previous simulation for 20000 steps.  Then the hidden-
output connection weights are reset to 0.0 and the training
signals are inverted.  Each network is trained again for
20000 steps.  This set of resetting the weights, inverting
the training signals and training for 20000 steps, is
repeated 48 times so as that the internal representation can
be formed more clearly.  Finally the hidden-output

connection weights are reset again and the output is trained
only for two input patterns.  The learning rate is decided
by trial and errors as in Table 1 (b).  Fig. 7 shows the
comparison of the learning and generalization ability in
wide meaning.  The upper four figures in Fig. 7 show the
output distributions after 48 sets of the regular learning.
The lower four are the output distributions after the
training for only two input patterns whose locations are
indicated as the two small circles in each figure.  It is
clear that the RBF-based network has poor generalization
ability, while the Gauss-Sigmoid NN and the sigmoid-
based NN has a good generalization ability due to the
internal representation in their hidden layers.  But this
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generalization ability sometimes did not appear due to the
initial connection weights between hidden layers.  The
reason may be that the circle region and stripe region are
represented more independently on the top hidden layer.
By increasing the number of the layers or decreasing the
number of the units in the top hidden layer was effective to
avoid these state.

Fig. 8 shows the center and size of each RBF
unit for each of the Gauss-Sigmoid NN, the RBF network
and the Gaussian soft-max network after the second
simulation when the number of the RBF units is 36.  It is
seen that in the RBF network, the location of each RBF
unit is affected strongly by the distribution of the given
training signal, and the centers of almost all units are
within the range of the input signals that is shown by a
gray-framed rectangle in each figure.  While, in the
Gaussian soft-max network, the RBF units are distributed
even out of the input range.  In the Gauss-Sigmoid NN,
the change of the location of each RBF unit from the initial
location is the smallest.  When the center and the size of
each RBF unit is fixed as the initial state (see Fig. 8 (a)),
the learning performance is still good in the Gauss-
Sigmoid NN.  This suggests that the sigmoid network in
the Gauss-Sigmoid NN has an ability to integrate the
localized information and reconstruct the input space very
flexibly.

5. Conclusion
The Gauss-Sigmoid neural network has been proposed, in
which the continuous input space is localized into some
regions by using RBF (Gaussian) units where the location
on the input space is represented by only one parameter,
and then the localized signals are dealt with by sigmoid-
based multi-layered neural network.   It was examined
through the simulation that a high learning speed, strong
generalization on the internal representation space, and the
stability even in the case of discontinuous mapping
approximation are simultaneously realized in this network.
It can be said that this network has both advantages of
RBF-based network and sigmoid-based multi-layer neural
network.

The known problem that has to be considered is
that when the dimension of the input space is large, we
face the curse of dimensions.  This is also the problem for
RBF-based network.
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