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Abstract 
We believe that communication in multi-agent system 

has two major meanings.   One of them is to transmit 
one agent’s observed information to the other.   The 
other meaning is to transmit what an agent is thinking.   
Here we focus the latter and aim to the emergence of the 
autonomous and decentralized arbitration through 
communication among some agents.   The 
communication contents, strategy and representation are 
not prescribed and are acquired by learning using a 
reinforcement signal which is given to the agent after its 
action.   The reinforcement signal is not shared with the 
other agents.   In order to realize this learning, the agent 
often has to make a decision not only from the present 
communication signals but also from the past signals.   
Accordingly the system architecture using recurrent type 
(Elman) neural network is proposed.   The ability of this 
architecture was examined by two and four agents 
negotiation problems.   A variety of negotiation 
strategies emerged among the agents through the learning 
to avoid some conflict after their decisions. 

 
 

1. Introduction 
 
In multi-agent system, communication is very effective 

for cooperation or arbitration among the agents.   
However, if we have designed in advance what the agents 
communicate and how the agents communicate, the agents 
cannot modify the communication contents, strategy and 
representation according to the change of the environment, 
and then they may lose the flexibility.   There are also 
many cases that the most effective communication 
contents, strategy and representation are not known 
beforehand.   Furthermore the communication contents, 
strategy and representation among our living creatures do 
not seem to be given from the outside of us, but are 
generated autonomously among us by the individual 
learning through experiences.   For these reasons, the 
emergence of communication is focused recently. 

We believe that communication has two major 
meanings.   One of them is to transmit one agent’s 

observed information to the other.   That is useful for 
making up a lack of the receiver’s observations.   The 
famous G. M. Werner et al’s work[1] belongs to this 
category.   In their work dealing with the mate finding 
problem, there are some females which cannot move but 
have an eye, and some blind males which can move.   
The females can transmit some communication signals to 
the males.   The transformation from the observed 
information to the communication signals in the females 
and the transformation from the communication signals to 
the action in the males are done by the recurrent neural 
network whose connection weights are given by the value 
of their genes.   When a male finds a female, they can 
produce a son and a daughter.   The offspring is 
produced by the standard genetic operations of crossover 
and mutation.   Here, the communication from the 
females to the males is utilized in order that the females 
inform the nearby blind male as to the information about 
the relative location between them that the blind male 
cannot know by itself.   The pioneering work by K. 
Nakano et al.[2] shows the learning method to generate 
some common words for the objects which exist in the 
environment.   The common word is useful with respect 
that the agent can know the existence of an object by the 
communication signals from the other agents.   
Accordingly it can be said that the communication in this 
work is also utilized to transmit the observed information 
to the other. 

The other meaning of communication is to represent 
what an agent is intending.   The agents become able to 
cooperate and also to avoid some conflict through 
communication.   Many works about negotiation are 
done at this standpoint in the distributed artificial 
intelligence field[3][4], but in these researches, the 
communication contents, strategy and representation were 
prescribed in advance, and were evaluated. 

Now we focus on “emergence of communication” and 
“communication of intention”.   We propose a learning 
architecture for the multi-agent which can generate an 
appropriate transformation from the past communication 
signals received from the other agents to the present 
communication signal or action.   Then note that the 
communication contents, strategy and representation are 



not prescribed.   Some reward is given to the agents in 
the case of the appropriate communication and action, and 
some penalty is given in the case of conflicts.   These 
reinforcement signals (reward and penalty) are not shared 
with the others.   It is also an important point of this 
research that the negotiation among some agents can be 
realized without sharing the reinforcement learning.   As 
an example, a negotiation problem is tries to be solved 
here.   In negotiation problems, an agent represents its 
intention at first.   However, when some conflict in the 
final decision is predicted, the agents have to change its 
intention according to the communication signals from the 
other agents. .   Sometimes the past series of 
communication signals are required to decide the change 
of its intention.   To achieve this function, Elman-type 
recurrent neural network[5] is employed. 

The proposed learning architecture is described in the 
next section, and two simulations are shown in the 
following section.   The first simulation is “two agents 
negotiation problem”.   It is examined that one-to-one 
negotiation, that is the simplest case, can be realized by the 
learning.   In this problem, there is only one solution. 
The basic ability of the system is evaluated by whether the 
solution is obtained or not in spite of many combinations 
of communication signals and decision.   The second one 
is “four agent negotiation problem”.    This problem is 
more difficult because it cannot be solved by the relation 
to only one opponent.   Each agent has to make a 
decision according to the other three agents and their 
locations.   It is difficult to design such agents manually.   
It is shown whether the agents have the abilities to 
negotiate with more than two agents autonomously and 
decentralizedly without sharing reinforcement signals. 

 
2. Learning Architecture 

 
Fig. 1 shows the proposed architecture of two agents.   

The agent receives the other agent’s previous 
communication signal and its own previous 
communication signal as the inputs to its own neural 
network.   The neural network is Elman-type, in which 
the present outputs of the hidden neurons are used as the 
inputs at the next time step.   The output function of each 
neuron except the input layer is sigmoid function whose 
value range is from -0.5 to 0.5.   The neural network has 
two outputs, one of which is the output for its 
communication and the other is for its action.   The 
actual communication signal and action outputs are 
stochastically determined from -1 or 1.   The probability 
p that each of them is 1, is the sum of the output of the 
neural network and 0.5.   The agents exchange their 
communication signals synchronously with each other 
three times, and then make a final decision of the action.   
At the beginning of each negotiation, all the inputs 
including the feedback inputs from the hidden neurons are 

set to be 0.0.   Accordingly the probability that the first 
communication signal is 1, does not depend on the other 
agent’s communication signal. 

The agent learns its communication and action by the 
reinforcement signal which is obtained after the action.   
When the agent obtained the reward, the probabilities of 
the action and a series of the communication signals 
become large, and when it obtained the penalty, the 
probabilities become small.   The neural network is 
trained by normal BP (Back Propagation) learning 
algorithm or BPTT (Back Propagation Through Time) 
learning algorithm[6].   Both are typical supervised 
learnings for neural networks.   In BPTT, the error signal 
propagates backward through time until the beginning of 
the negotiation.   On the other way, in normal BP, the 
error signal propagates backward through the network, but 
does not propagate through time, in other words, does not 
propagate from the input layer to the hidden layer.   The 
training signal is given to the communication output or 
action output at each time step as follows, 

xideal = x + r x' o  

where xideal : training signal,   x=f(u)=1/(1+exp(-u))-0.5 : 
output of the neural network, u : internal state of the output 
neuron,  : learning rate (0.1 is employed here), r : 
reinforcement signal.   Here 1 is employed in the case of 
reward, and -5 in the case of penalty.   What is different 
from the popular reinforcement learning is that the 
reinforcement signals are not discounted for the training of 
the past communication signal.  x’=dx/du=(0.5-x)(0.5+x), 
and o : actual (stochastically determined) communication 
signal or action that is different from the raw output of the 
neural network.   x’ is added to make the output stable 
when the probability p is close to 0 or 1.   The initial 
connection weights from the input layer to the hidden 
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Figure 1.  Proposed architecture of the agent 
for communication using a recurrent neural 
network. 



layer are set to be small random numbers, and those from 
the hidden layer to the output layer are set to be 0.0.   
Then the probabilities of all the actual outputs are just 0.5 
before the learning. 

 
3. Simulation 

 
3.1. Two Agents Negotiation Problem 

 
3.1.1. Setting. At first, two agents negotiation problem is 
described.   Figure 2 shows the simulation environment.   
Two players are randomly chosen from 16 agents, and the 
player cannot know the opponent directly.   Three 
communication chances, #1, #2, #3, are given to the 
players.   The players decide the communication signal 
(-1 or 1) at each chance according to the probability 
decided by the communication output as described in the 
previous section.   At the chance #1, the player has to 
decide the first communication signal without knowing the 
other’s signal.   At the chance #2, it decides the second 
communication signal depending on its and the other’s 
first signals.   At the last chance #3, it can decide the 
third signal from its and the other’s first and second 
signals.   Then note that the information about the first 
communication signals are supposed to be kept indirectly 
in the hidden layer as the context information through the 
hidden-input feedback connections.   Finally it decides 
which route of  (action=1) or  (action=-1) the 
player goes to.   If both players select the same route, 
they receives penalty (r=-5), and if they select the different 
route, they receives reward (r=1).   Then they learns its 
three communication signals and action from this 
reinforcement signal as described in the previous section.   
In this problem, since there are three communication 
chances, two of  23=8 agents can be distinguished using 
the communication patterns.   Even if all the 
communication signals are the same between two agents, 
the agents can make the different actions.   Then each of 
24=16 agents can go through the different route from the 
other’s ideally. 
 
3.1.2. Results. The right hand side of Table 1 shows the 
negotiation examples after a successful learning, which 
means that all the pairs of the agents could go without any 
collisions after learning.   In the almost all cases after the 
successful learning, the probabilities of all the 
communication signals and action were close to 1.0 or 0.0.   
The first three examples are explained as follows. 
Example 1: The agent 0 and agent 1 were chosen as 

players.   Both agents continued to output the 
communication signal 1, and finally the agent 0 went 
to the route , and the agent 1 went to the route .    

Example 2: The agent 0 and 2 were chosen.   The agent 
0 made the same sequence of communication signals 

and action (select the same route) as the example 1.   
The agent 2 made the communication output 1 twice, 
changed it to -1 at the third chance, and finally went 
to the route . 

Example 3: The agent 1 and 2 were chosen.   The agent 
1 continued to output the communication signal 1, 
and went to the route .   The action is different 
from that in example 1.   The agent 2 made the 
same communication signals and action as the 
example 2. 

Here, although the meaning of the communication 
signals had not been given to the agents before the 
learning, we put the meaning on them after the learning.   
There were two agents which always went through the 
same route not depending on the opponent agent like the 
agent 0 in the above examples.   The sequences of such 
agents’ communication signals were always the same not 
depending on the opponent.   These agents are supposed 
to have persisted on going through the selected route. 
Accordingly the meaning that the communication signal is 
1, is defined as the assertion to go through the route  in 
the above examples.   Then the agent 1 in the example 1 
is supposed to persist on the route , but to change its 
action to the route  finally. 

Now Table 1 shows the negotiation results for all the 
pairs of players.   The order of the agents in this table is 
sorted by the probability of selecting the route .   The 
filled circle  shows that the agent continued to persist 
on going along the route .   The circle  with 
superscript number means that the agent persisted on the 
route  until the superscript number of communication 
chance, and changed its intention to the route  at the 
next chance like the agent 12 in the example 7.   The 
circle  with subscript number means that the agent 
persisted on the route  at first, it changed its mind to 
the route  at the subscript number of chance, and 
finally it returned its intention to the route .   Such 
agent can be seen as the agent 4 in the example 5 and the 
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Figure 2.  Simulation environment of two agents 
negotiation problem 



agent 6 in the example 6 at the right hand side in Table 1.   
Each meaning of  and  is as well as the circle case, 
but the final selection is the route .   It is known that 
each agent was ordered and arbitrated autonomously and 
decentralizedly.   It was found in other simulations that 
the communication sequence acquired by the learning 
when the agent persisted on the route  was one of  (-1, 
-1, -1), (-1, 1, -1), (1, 1, 1) and (1, -1, 1).   The acquired 
sequence of the four depends on the initial connection 
weights and the stochastic factor in the choice of agents in 
the simulation.   The reason why the sequence was not (1, 
1, -1), (1, -1, -1), (-1, -1, 1) or (-1, 1, 1) is that it is easy to 
repeat the same communication signal at all times or to 
change the communication signal at all times.   That is 
because the previous signal is one of the inputs of the 
neural network.   When the number of agents is reduced 
to 8, the solution could be found more easily.   In this 
case, no agents exist which change its intention more than 
once like the agent 2, 4, 5, 6, 9, 10, 11 and 13 in Table 1. 

Next, the connection weights of the trained neural 
network with two hidden neurons in the agent 2 in Table 1 
is shown in Fig. 3 and the time series of the hidden 
neurons’ outputs for 4 types of opponent agents are shown 
in Fig. 4.   The agents could solve this problem by 
learning only with two hidden neurons, but the probability 

of success was very small.   The basic strategy of the 
agent can be interpreted as follows, 
1. The communication output is always close to the action 

output by the similar connection weights from the 
hidden layer to the output layer. 

2. The initial communication output is 1 by the positive 
bias of the hidden 2 neuron and the positive connection 
weight of the hidden 2 -> the output 1. 

3. If the opponent agent’s communication signal is -1, both 
outputs become 1 by the positive connection weights of 
the hidden 2 -> the output 1 and the hidden 2 -> the 
output 2, and negative connection weight of the input 1 �

-> the hidden 2.   This can be observed in Fig. 4 (b), 
(c) and (d). 

4. The agent tries to keep the output value by the negative 
connection weights of the input 2 -> the hidden 1 and 
the hidden 1 -> the output 1, and also by keeping the 
hidden 2 neuron’s output based on the positive feedback 
connection weight of the input 4 -> the hidden 2. 

5. If the opponent agent’s communication signal is 1, the 
hidden 2 value is decreased by the negative connection 
weight of the input 1 -> the hidden 2.   If the state, that 
both of the agent’s and the opponent agent’s 
communication signals are 1, continues for two time 
steps, the communication output becomes -1.   That is 
because the hidden 2 neuron’s output becomes less than 

Table 1.  Communication signals and action corresponding to the agent pair 
after learning when Elman-type neural network is used in the agent. 
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0 for the latter reason of the item 4.   This can be 
observed in Fig. 4 (a) and (b).  

The reason why the situation of the item 5 can be realized 
is that the neural network is recurrent and the context 
information can be stored by the feedback connection 
weights.   When the normal layered neural network was 
used instead of the Elman network, the agents which 
changed their intentions at the chance #3 like 2, 3, 12 and 
13 in Table 1 did not appear. 

100 simulations were done varying the initial 
connection weights of the neural network of each agent.   
The number of the hidden neurons is 4.   When BPTT 
was applied, all the combinations of two agents could go 
through the route without collisions in 41 simulations.   
In the case of normal BP, all the agents went through the 
route without collisions in 52 simulations.   We had 
expected that successful number is more in the case of 
BPTT than in the case of normal BP, but it was the 
opposite result.   The connection weights from the 
context inputs to the hidden neurons are used for both 
keeping the necessary context information and reflecting 
the information to the outputs.   The learning for both 
keeping and reflecting the context information can be done 
by BPTT, but by normal BP, the learning only for 
reflecting the context is done.   In this case, it might be 
thought that the learning for reflecting the context 
information to the outputs is useful to keep the necessary 
context information. 

 
3.2. Four Agents Negotiation Problem 

 
3.2.1. Setting.   Next four agents negotiation problem is 
presented.  The previous two agents negotiation problem 
can be solved by ordering all the agents and deciding each 
route based on the order between two players.   However, 
four agents negotiation problem is more difficult.   
Because, even if an agent has negotiated successfully with 
another agent, it might conflict to the other agents, and 
nevertheless the reinforcement signal of one agent is not 
shared with the others.   Furthermore, to solve the 
problem described in the following, it is not enough only 
to know what are the chosen agents, but also to know 
where the other chosen agents are arranged relatively. 

Figure 5 shows the environment of the four agents 
negotiation problem.   4 players are chosen randomly at 
each trial among 8 agents, and located at the entrance of 
each route.   The players can transmit a communication 
signal, -1 or 1, to all the players and can receive 4 
communication signals three times.   The first received 
signal is its own signal, the second one is transmitted from 
the opposite side agent, the third one is from the neighbor 
agent through the route , and the last is from the other 
neighbor agent through the route .   But the agent 
does not know the following three matters, the source of 
each signal, which are the chosen agents, and the locations 
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Figure 3.  Connection weights of the neural 
network in the agent 2 after learning. 
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of the chosen agents.   The agents have to decide 
whether it goes on the route  or the route .   If the 
agent can go through one route without collisions with the 
neighbor, it can obtain the reward r=1.   If the agent 
collides, the penalty r=-5 is given to the agent.   The 
reward and penalty is not shared with the other agents.   
The architectures of the agents are almost the same as 
shown in Fig. 1, but the number of communication inputs 
are 4 instead of 2.   The learning of each agent is same as 
the previous simulation.   The problem is solved when 
all the agents go clockwise or counterclockwise at each 
trial through the route arranged in a diamond shape as 
shown in Fig. 5.   In order that all the agents go 
clockwise or anti-clockwise, the agents have to select the 
same action (route) as the opposite side agent, and the 
different action from the neighbors.   It is very difficult 
for us to design the communication strategy of each agent. 
 
3.2.2. Results. The number of agent, 8, is not the 
maximum for solving this problem.   Many kinds of 
solutions could be found in the simulations on the contrary 
to the previous two agents negotiation problem.   In 
some simulations, one agent did not change the sequence 
of its communication signals and action, whatever the 
other agents’ communication signals were.   The agent 
seems to have the initiative, and all the other agents seem 
to try to know the location of the initiating agent and 
decide their actions according to the location if the 
initiating agent is chosen as a player.   In the most cases, 
all the agents changed their communication signals and 
actions 

Though the possibility of the successful learning is very 
small, this problem could be solved by the network with 
only two hidden neurons.   The details of the solution are 
described as follows.   Table 2 shows the typical 
negotiation examples in the solution.   In Table 2 (a), 
agents 0, 2, 3, 7 were chosen.   The first and second 
communication signals for 4 agents were the same, but 
only the agent 7 changed its signal at the communication 
chance #3.   Finally, the agent 0 and 3 took the action 1 
(route ) and the others took the action -1 (route ).   
Table 3 shows the probability of each communication 
signal and action, and the number of the 
communication-action patterns of each agent on all the 
combinations of the agents after learning.   The order of 
the agents is not sorted.   Since the values in the table is 
2p-1 where p is the probability that the communication 
signal or action is 1, the sign shows the agent’s preferable 
direction and the absolute value shows the insistence 
degree of the agent.   It is known that the agents can 
change its communication signals adaptively and with 
variety.   Especially the agent 0 took seven 
communication-action patterns among all the eight 
patterns.  Since the communication signal at the chance 

#1 is always the same, the number of all the patterns is 8.   
In all the agents, the signs of the communication signals at 
three chances are the same, while the sign of the action is 
always different from that of the communication signals.   
It can be interpreted that the communication signal 1 
denotes to insist on the action -1( ), and the 
communication signal -1 denotes to insist on the action 
1( ).   When we looked at the results for all the 
combination of the agents, some rules could be found as 
follows. 
(Case 1) When the preferable route of the four chosen 

agents is , e.g. when the chosen agents are 0, 2, 
3, and 7 as shown in Table 2 (a), the agent 7 always 
changed the communication signal from -1 to 1 at 
the chance #3, and took the action –1.   That does 
not depend on the arrangement of the agents.   
The opposite side agent did not change its 
communication signal, but took the action -1.   
The others did not change their signals and took the 
action 1 according to its preference.    

(Case 2) When the preferable route of three chosen agents 
is  and the other’s is  as shown in Table 2 
(b), the agent who prefers  and its two 
neighbors did not change their signals, and only the 
opposite side agent always changed the signal at the 
chance #2 and took the action . 

(Case 3) When the preferable route of the half of the 
chosen agents is , the situation can be divided 
into two cases.   In one case, where the agents 
have the same preference as the opposite side agent 
as shown in Table 2 (c), all the agents did not 
change the signal and took the preferable actions. 
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Figure 5.  Simulation of the four agents 
negotiation problem. 



 (Case 4) In the other case, where the two agents, who 
have the same preferable direction, are the 
neighbors as shown in Table 2 (d), there are many 
combinations and any simple rules could not be 
found. 

As well as this simulation, it had been expected also in 
other simulations that the half of 8 agents preferred the 
route  than the route , and the other 4 agents 
preferred the route .   However, it could be found that 
only two agents preferred the route , and the other 6 
agents preferred the route  as the most asymmetrical 
case. 

Figure 6 shows the connection weights of the recurrent 
neural network of the agent 0, 2 and 7.   The 
characteristics of each agent is described in the following. 

 [All agents] In the neural network of all the agents, it is 
easily found that the signs of the connection 
weights to the hidden neurons from the input 1 (the 
last communication signal from the opposite side 
agent) and input 4 (the last communication signal 
of the agent itself) is opposite to those from the 
input 2 and input 3.   That is because the agent in 
this simulation has to make the same decision with 
the opposite side agent and make the different 
decision from the neighbor agents.   Accordingly 
all the 8 agents have the same tendency in their 
strategy decided by their connection weights. 

Table 3.  The probability of the communication 
signals and action of each agent after learning 
and the number of the communication patterns.  
The values in the table are 2p-1 where p is the 
probability that the output is 1. 
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Figure 6.  Connection weights of recurrent 
neural network after learning 

Table 2.  Typical communication patterns after 
successful learning in four agents negotiation 
problem.  

#1 #2 #3 Act
Agent 0

Agent 2

Agent 3
Agent 7

-1
-1

-1

-1

-1
-1

-1

-1

-1
-1

-1

1

1
-1

1

-1

#1 #2 #3 Act
Agent 2

Agent 7
Agent 0

Agent 5

-1

-1

-1

1

-1

1

-1

1

-1

1

-1

1

1

-1

1

-1

#1 #2 #3 Act
Agent 2
Agent 5

Agent 7

Agent 4

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

1

-1

1

-1
(a)

(b)

(c)

#1 #2 #3 Act
Agent 2

Agent 4
Agent 5

Agent 7

-1

1

1

-1

-1

1

1

-1

-1

1

1

1

1

-1

1

-1
(d)  



[Agent 0] The agent 0 can generate seven sequences of 
communication signals and action as shown in 
Table 3 by the recurrent neural network as Fig. 6 
(a).   The absolute value of the connection 
weights from the input 1, 2, 3 are large and those 
from the input 4, 5, 6 are small.   This means that 
the agent 0 does not have strong intention and tries 
to adjust its action to the others.   That is the 
reason why the agent 0 generates a variety of 
sequences of communication signals. 

[Agent 2] On the contrary, the agent 2 does not change its 
communication signal as shown in Table 3.   That 
is also known from Fig. 6 (b) in which the 
connection weights from the hidden neurons to the 
communication output is close to 0.0 and the bias 
of the output is very small. 

[Agent 7] The agent 7 has an ability to change the 
communication output according to some contexts 
using recurrent neural network.   In Table 2 (a) 
and (d), the received communication signals at the 
chance #1 is the same as those at #2, but the 
communication signal of the agent 7 at chance #2 is 
different from that at #3.   The ability can be 
explained roughly from the connection weights as 
shown in Fig. 6(c).   Since the hidden 2 neuron is 
very small according to the bias at the chance #1, 
the hidden neuron 1 becomes large and the 
communication output becomes small at the chance 
#2 by the connection weight from the input 6 to the 
hidden 1 and the weight from the hidden 1 to the 
output 1.   However, since the hidden neuron 2 
becomes large by the connection weight from the 
input 3 to the hidden 2 at the chance #2, the hidden 
neuron 1 becomes small and the communication 
output becomes large at chance #3. 

In the case of the recurrent neural network with 4 
hidden neurons, 100 simulations were done varying the 
initial connection weights of each agents.   When BPTT 
was applied, in 42 simulations, all the combinations of two 
agents can go through the route without collisions.   In 
the case of normal BP, all the agents go through the route 
in 26 simulations.   BPTT is slightly useful in this 
simulation. 

 
4. Conclusion 

 
We proposed to divide communication among multiple 

agents into two classes with respect to its meaning.   The 
first one is to transmit the observed information, and the 
second one is to transmit the agent’s intention.   We also 
proposed the architecture using Elman type recurrent 
neural network for the learning of the latter 
communication autonomously and decentralizedly from 
the reinforcement signal.   The problem in which the 

agents avoid some collision by negotiation was adopted as 
example.   Although the communication contents, 
strategy and representation were not given to the agents 
beforehand, they became to be able to avoid the collision 
through the communication.   It was known that the 
recurrent neural network kept the past information as 
occasion demands, and the agent negotiated adaptively 
according to the other agents.   Among the agents, there 
were differences in the degree of the persistence of its 
intention.   We think that it can be said individuality.   
This individuality emerged even if the learning of all the 
agents are the same.   Furthermore, in the four agents 
negotiation problem, which cannot be solved only by 
one-to-one negotiation, the solution could be obtained 
without sharing reinforcement signal to the other agents.   
This process is similar to the optimizing process by 
Hopfield network with respect that each element descends 
a potential surface of the whole system by a decentralized 
way through the interaction with the others.   This 
architecture is useful particularly for the emergence of 
communication to transmit its intention, but it can be 
applied to the emergence of communication in multi-agent 
system generally. 
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