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Acquisition of Flexible Image Recognition by Coupling of
Reinforcement Learning and a Neural Network

Katsunari SHIBATA ∗ and Tomohiko KAWANO ∗

Abstract : The authors have proposed a very simple autonomous learning system consisting of one neural network (NN),
whose inputs are raw sensor signals and whose outputs are directly passed to actuators as control signals, and which
is trained by using reinforcement learning (RL). However, the current opinion seems that such simple learning systems
do not actually work on complicated tasks in the real world. In this paper, with a view to developing higher functions
in robots, the authors bring up the necessity to introduce autonomous learning of a massively parallel and cohesively
flexible system with massive inputs based on the consideration about the brain architecture and the sequential property
of our consciousness. The authors also bring up the necessity to place more importance on “optimization” of the total
system under a uniform criterion than “understandability” for humans. Thus, the authors attempt to stress the importance
of their proposed system when considering the future research on robot intelligence. The experimental result in a real-
world-like environment shows that image recognition from as many as 6240 visual signals can be acquired through RL
under various backgrounds and light conditions without providing any knowledge about image processing or the target
object. It works even for camera image inputs that were not experienced in learning. In the hidden layer, template-like
representation, division of roles between hidden neurons, and representation to detect the target uninfluenced by light
condition or background were observed after learning. The autonomous acquisition of such useful representations or
functions makes us feel the potential towards avoidance of the frame problem and the development of higher functions.
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1. Introduction

The authors have long-held misgivings about so-called “in-
telligent robots”. “Are intelligent robots which are provided
many pieces of knowledge by humans actually intelligent?”
Such skepticism led us to pursue an extreme target, that is, how
little knowledge robots need to acquire their process through
learning, including those usually considered unworthy of learn-
ing, such as image processing. We have then proposed a very
simple autonomous learning system consisting of one neural
network (NN), whose inputs are raw sensor signals and whose
outputs are directly passed to actuators as control signals, and
which is trained by using reinforcement learning (RL) [1]–[3].

Unlike recognition and control, which are closer to sensors
and actuators respectively, in the flexible acquisition of higher
functions in robots, it is very difficult to decide in advance what
the inputs and outputs should be. This difficulty might be the
main reason why the research on higher functions has made less
progress than the other. We believe that, without a significant
change in thinking, an intelligent system that enables the emer-
gence of higher functions cannot be achieved. It also becomes
important that learning not be specific only for one purpose,
but flexibly applicable for the emergence of various functions
according to the necessity and situation. From this viewpoint,
the autonomy, flexibility, harmony, and generality in learning
should be evaluated together with the acquired function itself.

The focus of recent research for developing more intelli-
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gent robots or agents based on autonomous learning has cen-
tered on “prediction”, and some interesting works have been
done [4]–[7]. Some of them use or consider using RL, but “pre-
diction” is performed separately from RL. However, if the num-
ber of sensor signals is large especially when a visual sensor is
used, it might be impossible to predict all sensor signals at ev-
ery future time step. Therefore, the information that is predicted
should be picked up from all sensor signals, and some relevance
criterion is necessary for it. Discovering an appropriate crite-
rion is the process needs high intelligence. As a criterion for
prediction, linear independence has been proposed [8], but we
think that purposive compression is necessary for consistency
with the system purpose and effective compression.

Currently, the autonomous learning ability of RL and paral-
lel and flexible learning in NNs are widely accepted. However,
many researchers are still positioning RL as learning for actions
in the total process, and the NN as just a function approximator.
No one has ever tried to apply RL to a NN with a large num-
ber of inputs in a real-world-like environment without explicit
state space construction. The prevalent idea seems to be that the
learning system in which regular RL and a NN are just coupled
is too simple to work on complicated tasks in the real world.

We believe that in such tasks, our proposed system can make
more significant contributions than alternative methods because
it is increasingly difficult for humans to design appropriate pro-
cessing. In this paper, in order to support the belief and attempt
to stress the significance of our proposed system, we put forth
two necessities for the future research on human-like intelli-
gent robots. Those are the necessity to introduce autonomous
learning of a massively parallel and cohesively flexible system
with massively inputs from the consideration about the brain

JCMSI 0002/09/0202–0122 c© 2008 SICE



SICE JCMSI, Vol. 2, No. 2, March 2009 123

Fig. 1 The comparison between brain and robot processing.

architecture and the sequential property of our consciousness,
and also the necessity to place more importance on “optimiza-
tion” of total system under a uniform criterion than “under-
standability” for humans. After that, we introduce one success-
ful experimental result in a flexible image recognition task in
a real-world-like environment, and we hope that the analysis
result of hidden neurons’ representation in the NN shows the
autonomous learning ability and the potential towards the de-
velopment of higher functions in our proposed system.

2. The Marriage of Reinforcement Learning (RL) and
Neural Network (NN)

Here we introduce two concepts for aiming at developing a
system that enables the emergence of higher functions in the
future research on robot intelligence, and try to support the sig-
nificance of our proposed learning system.

2.1 The Necessity of Massively Parallel and Cohesively
Flexible System with Massive Inputs

When comparing the processing between humans and robots,
it is easily noticed that our brain is a massively parallel and co-
hesively flexible system with huge sensory inputs, while the
processing in robots seems modularized, sequential and gen-
erally not so flexible as shown in Fig. 1. We can also notice
that our consciousness seems sequential even though the brain
it originates from is a massively parallel system. It might be
true that much of our processing is performed subconsciously
in our brain. For example, we are not aware of the orientation
selectivity in the visual cortex. This means that we do not have
the means to understand the processing in our brain exactly,
and we can do nothing more than use sequential consciousness
to try to guess the processing of the brain. Accordingly, we
understand the brain function by dividing it into modules, and
they are arranged sequentially when the robot processes are de-
signed. That might cause the “frame problem” [9],[10]. The
modularized system is not so flexible because the input and out-
put of each module have to be defined in advance. We do not
think that higher functions can be developed as an extension of
such a sequential and modularized system.

Imaging and electrical recording of brain activity seem insuf-
ficient to understand the exact process of the whole brain. Even
though they provide sufficient information, it is difficult for us
to understand the mechanism and to apply it to robots. “Optic
illusions” and the “choice blindness” [11] also seem to suggest
the gap between what we do and what we are conscious of.

While maintaining its harmony, our brain is nonetheless very
flexible. For example, when one sensor cell dies, other cells
and neurons that exist already compensate for the lack of the

dead cell by their growth and learning.
From the above discussion, we put forth the necessity of a

massively parallel and cohesively flexible system with mas-
sive inputs for the emergence of higher functions.

2.2 The Necessity of Optimization of Entire Process under
One Uniform Criterion

The Subsumption Architecture [12] proposed by Brooks has
had a great significance in discovering the problem of cumula-
tive sequential processing in the conventional approach and in
introducing a novel way of employing a parallel architecture.
Actually, such architecture has shown the usefulness of avoid-
ing the “frame problem” [9],[10]. However, he states that the
decomposition of a complex system into parts is necessary in all
engineering endeavors [12]. He also puts “understandability”
for humans before “optimization” for creatures. This notion re-
sults in the introduction of layers, in other words, functional
modules although they are connected in parallel. He suggests
developing useful programs for the layers and designing the
interaction between them even though he expresses concerns
about the extensibility of his system and development of higher
functions. Its fixed topology network and increasing complex-
ity in the interaction design between layers are the main prob-
lems with his approach.

Here, let us reconsider what the processing in robots should
be. In this context, the processing consists in deriving the out-
puts, as actuator commands, from the sensor signals given as
inputs. The objective is generally to obtain appropriate outputs
for some purpose under the condition of the inputs. In other
words, the objective is to solve an optimization problem as
shown in Fig. 2(a). As Brooks suggested [12], researchers have
often placed “understanding” before “optimization”. However,
as long as the processing in robots is not modified manually, the
objective should be “optimization” rather than “understandabil-
ity”. A radical idea asserts that all the functions humans have
are obtained as a result of optimization of the outputs under
the condition of given inputs. For example, better recognition
leads to better actuator commands. Thus, considering the dis-
cussion in the last subsection, we suggest to introduce some
parallel processing system, and to optimize it to obtain appro-
priate outputs for some purpose. We should not interfere with
the robots’ processes, but leave everything to their own opti-
mization as much as possible.

It is important that the optimization should be useful for the
future states, but in the real world, creatures do not encounter
exactly the same states as those encountered in the past. Nev-
ertheless, humans can perform appropriate actions by referring
to past experiences. The key properties realizing this ability
are “generalization” and “abstraction”. “Generalization” usu-
ally means the property of having similar outputs correspond-
ing to similar inputs. On the other hand, humans, for example,
can grasp the same meaning from either ’2’ or ’II’ on a clock
face even though the images of the characters are not similar to
each other. In this meaning, construction of a useful abstract
space and generalization on that space is important [13],[14].

Brooks states that abstraction is the essence of intelligence
and the hard part of the problems being solved [12]. Most re-
searchers might agree that abstract information is the impor-
tant information extracted from sensor signals. However, what
is necessary is to discover the criterion to decide which infor-
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Fig. 2 (a) The objective in robots is to optimize the process from sensors
to actuators for some purpose. (b) Parallel and cohesively flexi-
ble learning of the whole process from sensors to actuators by the
coupling of RL and NN and the emergence of necessary functions.

mation is important. Feature extraction in image processing
can be considered as one type of abstraction. However it is
not acquired autonomously based on some relevance criterion,
but is provided by humans. One possible relevance criterion
can be “how well the sensor signals are reconstructed from
the low-dimensional abstract signals”. It is used to compress
high-dimensional signals using principle component analysis
or other method like [15]. A bottleneck NN that learns identi-
cal mapping with fewer hidden neurons [16],[17], is also based
on the criterion. However, the abstraction is performed without
considering the purpose of the system. Therefore, we are afraid
that purposive and effective compression cannot be expected.
If optimization is the objective to develop the process in robots,
the criterion for abstraction should be consistent to it. The dis-
cussion is the same as the case of “prediction” in Introduction.

From the above discussion, we put forth the idea that
whole the system should be optimized under one uniform
criterion, and leave everything to the optimization in robots
as much as possible for the emergence of higher functions.

2.3 Proposed System and Learning

As aforementioned, we have previously proposed a system in
which a NN, whose input are sensor signals and whose output
are passed directly as actuator commands, and which is trained
by using RL as shown in Fig. 2(b) [1]–[3]. The NN is a par-
allel and cohesively flexible processing system. RL provides
the optimization towards a given purpose. A NN requires train-
ing signals to achieve purposive learning. If they are provided
by humans in advance, they can be a constraint for the crea-
ture. However, RL can always generate and provide the train-
ing signal to the NN autonomously, and that enables purposive
optimization of the total system under one uniform criterion.
If it is assumed that a NN can always realize the optimization
through learning, the system has very suitable properties for
emergence of intelligence. Through purposive learning, vari-
ous functions such as recognition, planning and control are ex-
pected to emerge according to the necessities of a given task.

It has also been verified that by using a recurrent NN, “atten-
tion and associative memory” [18], “communication” [19], and
“contextual behavior” [20] emerge in very simple tasks. More-
over, we expect that “prediction” to which many researchers are
giving much attention in developing intelligence, as mentioned
in Introduction, can be obtained through learning.

Since the NN trained by RL is optimized on the criterion
through learning, the hidden representation in NN is suitable
to be called abstract information. NN trained by RL has an ex-
cellent ability to realize such purposive abstraction and knowl-
edge transfer is effectively done through learning [21]. Such
ability is essential for the learning in the real world and leads
to higher functions. From this viewpoint, the discovery of use-
ful hidden neurons’ representation will be focused in the next
“experiment” section.

The combination of NN and RL sometimes causes instability
of learning [22]. However, if a continuous state space is divided
into some local spaces, and each input signal represents the in-
formation in only one of the local spaces, learning becomes sta-
ble. The reason for this is that the learning for an input pattern
does not influence so much to that for the other input patterns.
The mechanism is similar to that of the stability in CMAC [23]
or RBF-based network including NGnet(Normalized Gaussian
Network) [24]. The regular NN has one or more hidden lay-
ers that can represent abstract information, and that is different
from the case of CMAC or RBF-network. However, the sta-
bility was shown empirically even in such cases, and abstract
space can be reconstructed very flexibly in the hidden neurons
if each input signal represents local information [2],[25],[26].

In the proposed system, RL can be either Q-learning [27]
or actor-critic [28]. Since Q-learning is used and the task is
episodic in the experiment in this paper, the way of train a NN
using Q-learning in an episodic task is explained. Q-learning is
usually represented by the update rule:

Q(st, at)←
Q(st, at)+α

[
rt+1 + γmaxa Q(st+1, a) − Q(st, at)

]
(1)

where Q(st, at) is Q-value for state-action pair (st, at), rt is a
reward, and γ is a discount factor. According to this update,
Q(st, at) moves towards rt+1 + γmaxa Q(st+1, a). When a NN
is used, the number of outputs is equal to the number of the
actions, and each output is dealt with as the Q-value for the
corresponding action. At a non-terminal state with a new sensor
signal vector S t+1, the training signal Tat ,t for the output of the
executed action at with no provided reward is calculated as

Tat ,t = γ(max
a

Oa(S t+1)), (2)

where Oa(S t+1) is the a-th output of the NN when S t+1 is en-
tered. When S t+1 is a terminal state, it is

Tat ,t = rt+1. (3)

The NN is trained by Back-Propagation [16] using the train-
ing signal. However, to calculate Tat ,t at non-terminal state,
Oa(S t+1) is necessary. Accordingly after forward computation
for the input S t+1 and calculation of maxa Oa(S t+1), forward
computation for the input S t is done again and training by Back-
Propagation using Tat ,t is done.
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3. Experiment

3.1 Setup

Here we introduce an experiment using two AIBO robots to
show that the autonomous learning ability of our proposed sys-
tem works effectively in real-world-like environment. The envi-
ronment is shown in Fig. 3. Two AIBOs are placed face-to-face
43cm from one another. The black AIBO can rotate its head
around the vertical axis and catch sight of the white AIBO us-
ing its color camera located at its nose. The horizontal angle of
view of the camera is 57 degree. The number of pixels is around
350,000, but when the AIBO sends the image to the computer,
it is reduced to 52 × 40 = 2080 by pixel skipping. The res-
olution and range of the head motion are 5 and ±20 degrees
respectively. That means that there are a total of 9 head states
where the location of the white AIBO in the camera image is
different. However, here, no explicit state space construction is
given, and raw sensor signals are entered to the NN directly.

The procedure that the black AIBO has to perform in the
task is shown in Fig. 4. There are three actions that the black
AIBO can choose. They are “rotate right”, “rotate left”, and
“bark”. The aim is to bark after rotating its head until it catches
the white AIBO at the state 0 that indicates the white AIBO
is located at the center of the captured image. When it barks
correctly, it receives a reward, but if it barks at an incorrect
state (state −4,..,−1, 1,.., 3 or 4), a small penalty is imposed.
ε-greedy (ε = 0.13 here) is employed for action selection.

As shown in Fig. 5, the NN has 5 layers, and the inputs are
the raw image signals (2080 pixels × 3 colors (RGB) = 6240)
after inverting each pixel value and normalizing it between 0.0

Fig. 3 The environment for the experiment.

Fig. 4 Sample of the state transition in the experiment.

and 1.0. There are 3 output neurons, each of which represents
Q-value and is corresponding to one of the 3 actions. The num-
ber of neurons in each layer is 6240-600-150-40-3 from input
layer to output layer. The training signal is generated by using
Q-learning [27] and the NN is trained by Error Back Propaga-
tion [16]. When the action of “rotate right” or “rotate left” is
chosen at time t, the head is rotated and forward computation of
NN at time t + 1 is performed with the new input S t+1 that can
be obtained after the head rotation. After that, the input S t are
inputted into the NN again, and only the output for the executed
action at time t is trained by the training signal as

Tat ,t = γ(max
a

Oa(S t+1) + 0.4) − 0.4 (4)

on behalf of Eq. (1). Here, the sigmoid function used as the
output function of each neuron ranges from −0.5 to 0.5. To
adjust the offset between Q value and output, 0.4 is added and
subtracted in Eq. (4). That means that Q-value 0.0 corresponds
to output −0.4 and Q-value 0.8 corresponds to output 0.4. Here,
the discount factor γ is 0.8. When the black AIBO barks at time
t, the trial terminates, and the training signal is provided as

Tat ,t = 0.4 at state0
= Oat (S t) − 0.02

at all the other states.
(5)

After that, another trial (episode) starts from a state chosen ran-
domly. Since learning takes so long using a robot in real time,
learning was performed using some images captured before-
hand. The images were captured under various backgrounds
and light conditions. 312 patterns (312 × 9 states = 2808 sam-
ples) were used for learning, and 92 patterns (92×9 states = 828
samples) were used for testing. If one image input is considered
as one state, the number of states is 2808 in the learning phase
and when the test patterns are used, none of the training states
appears. At each state transition, one image is chosen randomly
from images for the new head state. This means that the state
transition is not deterministic. Furthermore, because of the use
of a real robot, the position of AIBO in the image is sometimes
shifted slightly from what is expected.

Figure 6 shows the variety of captured images due to the light
condition and background. We can see that it is not so easy to
write a program to recognize the location of AIBO. The face
and shoulder areas of Fig. 6 (a) and (b) are cropped and enlarged
as shown in Fig. 7. The number beside each image indicates
average brightness. Note that the brightness is almost the same
between the black area in the bright condition and the white
area in the dark condition even though they are the opposite
colors.

3.2 Learning Results

Figure 8 shows the learning curve. At every 100 trials, suc-
cess ratio over 50 trials with ε = 0 is observed for the cases
of both learning patterns and test patterns. The initial head
location in each trial is +20 degree or −20 degree in the test
phase. The success ratio rose steeply at around 5000 trials in
both cases, and finally reached around 95% for the learning pat-
terns and 90% even for the test patterns that were not used in
learning. After 20,000 learning trials, the performance was also
examined on the real robot. The success ratio for 100 trials with
5 different backgrounds for each of daytime and night is shown
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Fig. 5 The processing in the black AIBO.

Fig. 6 Some sample images that were captured under different light con-
ditions and with different backgrounds and were used in learning.

Fig. 9 (a) Samples of actual image. (b-1,..,6) The images that visualize the change of the connection
weights from the input layer for 5 lowest hidden neurons through RL. AIBO images can be
found at the place where small white arrows are pointing. (b-7) Visualized connection weight
change of one neuron in the middle hidden layer. (c-3) Visualized connection weights for the
same hidden neuron as (b-3).

in the right part of Fig. 8. The ratio was equal to or more than
90%. The large success ratio for the test patterns indicates that
the acquired recognition function has generalization ability.

3.3 Visualization of Hidden Representation

Next, the connection weights of each of the 600 neurons in
the lowest hidden layer were observed. Because the number
of connections in each lowest hidden neuron is the same as the

Fig. 7 Four magnified images each of which is the black (face) part or
white (shoulder) part of AIBO in one of the two images (a) and
(b) in Fig. 6. The number beside each image indicates the average
brightness.

number of inputs, the weight pattern after some linear transfor-
mation can be observed as a color image whose size is 52× 40.
The weight patterns seem random as shown in Fig. 9 (c-3) by
the influence of initial connection weight that was determined
randomly. However, revealing patterns could be observed only
when the change of each weight from the initial value was ob-
served as shown in Fig. 9 (b-3). The linear transformation from
each weight value to the corresponding pixel value fc,i, j that
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ranges from 0 to 255 is as

fc,i, j = (int)

(
Wac,i, j −Wbc,i, j

maxc,i, j

∣∣∣Wac,i, j −Wbc,i, j

∣∣∣
×127

)
+ 128, (6)

where Wa,Wb indicate the weight after and before RL respec-
tively, c indicates the color and can be R, G, or B, and i, j
indicate the raw and column number of a pixel in the image re-
spectively. By this transformation, if the value of a connection
weight increases during learning, the pixel corresponding to it
becomes bright, and if the value decreased, the pixel becomes
dark. The maximum absolute value of the weights for the low-
est hidden neuron that is shown in Fig. 9 (b-3) and (c-3) is 0.127

Fig. 8 Learning curve for both training and test patterns, and the success
ratio when using the real AIBO robot after learning.

Fig. 10 One output neuron was added to the NN after RL, and supervised learning was performed using
only two input images labeled as “learned”. The training signal for one pattern is 0.4, while it
is −0.4 for the other. After that, the output for some test input images was observed. The light
conditions, background, and also the presence of AIBO are varied in the input images. The
outputs are compared with (a) the case that no RL was done before this learning and (b) the
case that RL was done before this learning. In the latter case, the output changes according to
the presence of AIBO.

before RL, and 0.131 after RL. While, the maximum absolute
value of the change of weights between before and after RL is
as small as 0.012.

In most of the weight images, AIBO silhouette could be
found. Some of them are shown in Fig. 9 (b-1,..,6). Some
real pictures are shown in Fig. 9 (a-1,2,3) for reference. The
location of the AIBO image appears in (b-1,2,3) is almost the
same as that in the real pictures (a-1,2,3). It can be inferred that
each of the three neurons in the lowest hidden layer works like
a template and plays a role in detecting whether the AIBO is
caught at a particular location on the image. What is significant
is that such division of roles among hidden neurons can be real-
ized autonomously through RL even though either input images
or propagated error signals that are provided to each neuron are
not controlled by anyone. In Fig. 9 (b-4), one becomes aware
that one AIBO located at the left half reveals a negative pattern
and the other AIBO around the center reveals a positive one.
In Fig. 9 (b-5), one can find a blurred negative AIBO image
around the center and a positive one around each of the left and
right ends. In Fig. 9 (b-6), one half of the AIBO image looks
positive and the other half looks negative. The appearance of
both positive and negative AIBO images possibly helps in the
recognition uninfluenced by light condition.

The weight-change images of the neurons in the middle hid-
den layer are observed by normalizing the weighted sum of the
weight-change in the lowest hidden neurons by the connection
weights between the lowest and middle hidden neurons. In
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most of them, AIBO silhouette could be also found. It is in-
teresting that a fat AIBO silhouette as shown in Fig. 9 (b-7)
could be found very often. It is not certain, but it might reduce
the influence of head displacement on recognition. Our guesses
might be only a part of the functions that the NN acquired, as
we cannot understand completely how the brain functions when
we see the excitation pattern of real neurons in the brain.

3.4 Observation of Hidden Representation through Addi-
tional Supervised Learning

Finally, in order to show that the NN had an internal rep-
resentation to represent the AIBO location without being in-
fluenced by the background or light condition, additional su-
pervised learning is performed to the NN after RL. The output
neurons were removed and a new output neuron with 0 con-
nection weight from all the neurons in the upper hidden layer
was added. 12 new images were captured after putting the two
AIBOs at a different place where the learning and test patterns
were captured. There are 6 pairs of images, and in each pair,
only the difference is whether the white AIBO appears on the
center of the image or not. In 3 pairs, no object was located in
the background, while in the other 3 pairs, some objects were
located. One of the 3 pairs was captured in daytime, another
was captured also in daytime but shaded with a blind, and the
other was captured at night. In this learning, among 12 images,
only the two images that are labeled as ”learned” in Fig. 10
were used in learning. In one of them, AIBO appears in the
image with nothing placed behind it, and the image is bright
because it was captured during daytime. In the other, the AIBO
is not present, and some objects are placed. The image is not
bright because it was captured at night. One of the two images
was chosen randomly and presented as input at each step dur-
ing learning. For the first image, the training signal 0.4 is given,
and for the other, −0.4 is given.

After the output for two training images was almost equal to
each training signal, the output for the other 10 images is ob-
served as shown in Fig. 10. The output is compared with two
cases when no RL was done before this supervised learning
(Fig. 10 (a)) and when supervised learning was done after RL
(Fig. 10 (b)). The initial connection weights were the same be-
tween them. When no RL was done before, the output changes
according to the background and also light conditions, but does
not change so much according to the presence of the AIBO.
This is logical from the viewpoint of generalization because the
value in more pixels changes according to the background and
light conditions than according to the presence of AIBO. The
AIBO occupies only a small part of the image.

However, when supervised learning was done after RL, the
sign of the output is determined by whether the AIBO is present
or not. This means that through learning, the NN obtained the
internal representation to express whether the AIBO appears
in the center of the image or not without being influenced by
the background or light condition. Generalization worked on
the hidden neurons’ representation that is acquired through RL
rather than on the input sensor signals’ space.

In this experiment, no one told the black AIBO to recognize
the white AIBO location nor did anyone teach the black AIBO
how to recognize the white AIBO location without being in-
fluenced by the background or light condition. However, the
black AIBO acquired the ability to recognize the white AIBO

autonomously through RL. It can be said that the black AIBO
could learn not only appropriate actions, but also could learn
autonomously which information is important to achieve the
given task.

4. Discussion

If we consider that this task is to classify 2808 images con-
sisting on 6240 pixels into 3 categories, and the head state is
limited in only 9 states even though its control is not so precise,
the task seems very easy. (The first report about the result of a
more difficult walking task will appear in [29].) However, we
know in advance what the target of the task is and that the head
location is limited. Also, we know what the template matching
technique is, and we can guess that it probably works well after
some compensation of light condition because the head location
is limited. For these reasons, we think the task should be easy.
On the other hand, the AIBO did not know them at all before
learning. Any classification samples were not provided dur-
ing learning, and the AIBO had to learn what is an appropriate
classification during learning. The reward for successful bark
and punishment for incorrect bark are the only things provided
to the AIBO during learning. The architecture and learning are
quite simple and general, and are not designed specially for this
task. Nevertheless, the AIBO finally discovered the template-
like hidden representation, and furthermore, it is not influenced
much by light conditions or background. This suggests us that
the autonomy and flexibility of the learning system is excellent.
Even though the task is learned as a classification task by SVM
(Support Vector Machine), such abstraction cannot be achieved.
This is because SVM aims at classification problems, but does
not have a way to form the intermediate representation flexibly
and purposively through learning.

It has been pointed out that in developing intelligent robots,
the frame problem [9],[10] becomes serious. Brooks showed
that it is useful to introduce a parallel architecture on behalf of
conventional sequential processing for the frame problem [12].
However, as he pointed by himself, it is difficult to design each
module and how to connect them in parallel. We cannot see the
way to higher functions in this approach. In our proposed learn-
ing system, functions autonomously emerge in the NN that is a
parallel processing system and no special technique is added
for special purposes. This would suggest that the system is
free from the “frame problem” fundamentally and has a po-
tential towards the emergence of higher functions thanks to its
autonomous, flexible, parallel, harmonious and general prop-
erty of learning.

5. Conclusion

From the viewpoint of our insufficient ability to understand
and express the parallel and flexible mechanism of our brain
and the notion of “optimization” of the system, the authors rec-
ommend interfering with the couple of reinforcement learning
and a neural network as little as possible to obtain intelligence.
In the experiment in a real-world-like environment, template-
matching-like image processing, autonomous division of roles
among hidden neurons and also internal representations that are
not influenced by the background or light conditions could be
observed in the neural network that is parallel and flexible as
is our brain even though no prior knowledge about the task or
image processing was given to the robot. This work shows the
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potential of the couple in complicated tasks in the real world
and evidence towards the emergence of higher functions.

Acknowledgments
This research was supported by JSPS Grant in-Aid for Scien-

tific Research #15300064 and #19300070. The authors would
like to express their gratitude to the reviewers who gave us very
helpful comments to organize the early part of this paper.

References

[1] K. Shibata and Y. Okabe: Reinforcement learning when the vi-
sual signals are directly given as inputs, Proc. ICNN ’97, Vol. 3,
pp. 1716–1720, 1997.

[2] K. Shibata, Y. Okabe, and K. Ito: Direct-vision-based re-
inforcement learning using a layered neural network, Trans.
SICE, Vol. 37. No. 2, pp. 168–177, 2001 (in Japanese).

[3] K. Shibata and M. Iida: Acquisition of box pushing by direct-
vision-based reinforcement learning, Proc. SICE Annual Conf.
2003, 0324.pdf, pp. 1378–1383, 2003.

[4] J. Schmidhuber: Exploring the predictable, Advances in Evo-
lutionary Computing, pp. 579–612, Springer, 2002.

[5] J. Tani: Learning to generate articulated behavior through the
bottom-up and the top-down interaction processes, Neural Net-
works, Vol.16, No.1, pp. 11–23, 2003.

[6] R. S. Sutton, E. J. Rafols, and A. Koop: Temporal abstraction in
temporal-difference networks, Advances in Neural Information
Processing Systems, Vol. 18, pp. 1313–1320, 2006.

[7] P.-Y. Oudeyer, F. Kaplan, and V.V. Hafner: Intrinsic motiva-
tion systems for autonomous mental development, IEEE Trans.
Evolutionary Computation, Vol.11, No.1, pp. 265–286, 2007.

[8] P. McCracken and M. Bowling: Online discovery and learning
of predictive state representations, Advances in Neural Infor-
mation Processing Systems, Vol. 18, pp. 875–882, 2006.

[9] J. McCarthy and P.J. Hayes: Some philosophical problems
from the standpoint of artificial intelligence, Machine Intelli-
gence, Vol.4, pp. 463–502, 1969.

[10] D. Dennett, Cognitive Wheels: The frame problem of AI,
The Philosophy of Artificial Intelligence, M. A. Boden, Ed.,
pp. 147–170, Oxford University Press, 1984.

[11] P. Johansson, L. Hall, S. Sikstrom, and A. Olsson: Failure to
detect mismatches between intention and outcome in a simple
decision task, Science, Vol. 310, pp. 116–119, 2005.

[12] R. A. Brooks: Intelligence without representation. Artificial In-
telligence, Vol. 47, pp. 139–159, 1991.

[13] K. Shibata and K. Ito: Adaptive space reconstruction on hidden
layer and knowledge transfer based on hidden-level generaliza-
tion in layered neural networks, Trans. SICE, Vol. 43, No. 1,
pp. 54–63, 2007 (in Japanese).

[14] K. Shibata and K. Ito : Reconstruction of visual sensory space
on the hidden layer in a layered neural networks, Proc. ICONIP
’98, Vol. 1, pp. 405–408, 1998.

[15] L. Saul and S. Roweis: Think globally, fit locally: Unsu-
pervised learning of nonlinear manifolds, Journal of Machine
Learning Research, Vol. 4, pp. 119–155, 2003.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams: Learning in-
ternal representation by error propagation, Parallel Distributed
Processing, Vol. 1, pp. 318–364, MIT Press, 1986.

[17] B. Irie and M. Kawato: Acquisition of internal representation
by multilayered perceptrons, Electronics and Communications
in Japan, Vol. 74, pp. 112–118, 1991.

[18] K. Shibata and M. Sugisaka: Dynamics of a recurrent neural
network acquired through the learning of a context-based atten-
tion task, Artificial Life and Robotics, Vol. 7. No. 4, pp. 145–
150, 2004.

[19] K. Shibata: Discretization of series of communication signals
in noisy environment by reinforcement learning, Proc. ICAN-
NGA’05, pp. 486–489, 2005.

[20] H. Utsunomiya and K. Shibata: Contextual behavior and inter-
nal representations acquired by reinforcement learning with a
recurrent neural network in a continuous state and action space,
Proc. ICONIP2008, LNCS, Springer-Verlag, 2009 (to appear).

[21] K. Shibata: Spatial abstraction and knowledge transfer in re-
inforcement learning using a multi-layer neural network, Proc.
Fifth Int’l Conf. Development and Learning, 36, 2006.

[22] J. A. Boyan and A. W. Moore: Generalization in reinforcement
learning, Advances in Neural Information Processing Systems,
Vol. 7, pp. 370–376, The MIT Press, 1995.

[23] R.S. Sutton: Generalization in reinforcement learning: Suc-
cessful examples using sparse coarse coding, Advances in Neu-
ral Information Processing Systems, Vol. 8, pp. 1038–1044,
MIT Press, 1996.

[24] J. Moody and C.J. Darken: Fast learning in networks of locally-
tuned processing units, Neural Computation, Vol. 1, pp. 281–
294, 1989.

[25] A. Maehara, M. Sugisaka, and K. Shibata: Reinforcement
learning using gauss-sigmoid neural network, Proc. AROB 6th,
Vol. 2, pp. 562–565, 2001.

[26] K. Shibata, M. Sugisaka, and K. Ito: Fast and stable learning
in direct-vision-based reinforcement learning, Proc. AROB 6th,
Vol. 1, pp. 200–203, 2001.

[27] C.J.C.H. Watkins: Learning from delayed rewards, PhD thesis,
Cambridge University, Cambridge, U.K., 1989.

[28] A.G. Barto, R.S. Sutton, and W. Anderson: Neuronlike adap-
tive elements can solve difficult learning control problems,
IEEE Trans. SMC, Vol. 13, No. 5., pp. 834–846, 1983.

[29] K. Shibata and T. Kawano: Learning of action generation from
raw camera images in a real-world-like environment by simple
coupling of reinforcement learning and a neural network, Proc.
ICONIP2008, LNCS, Springer-Verlarg, 2009 (to appear).

Katsunari SHIBATA (Member)

He received his B.E., M.E., and D.E. degrees from The
Univ. of Tokyo, Japan, in 1987, 1989, and 1997, respec-
tively. He worked at Hitach Co. Ltd., The Univ. of Tokyo,
and Tokyo Inst. of Tech. Since 2000, he worked at Oita
Univ., where he is currently an Assoc. Professor. In 2005,
he was a visiting professor of Univ. of Alberta. His re-
search has focused on function emergence based on au-

tonomous learning especially using reinforcement learning and neural net-
works. He is a member of SICE, IEICE, JNNS and IEEE.

Tomohiko KAWANO

He received his B.E. and M.E. degrees from Oita Uni-
versity, Japan, in 2006 and 2008, respectively. He is now
working in Kyushu Toshiba Engineering Co. Ltd. His re-
search interests include autonomous learning system and
robotics.


