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Abstract

This paper shows that a system with two-link arm can
obtain hand reaching movement to a target object pro-
jected on a visual sensor by reinforcement learning us-
ing a layered neural network. The reinforcement sig-
nal, which is an only signal from the environment, is
given to the system only when the hand reaches the
target object. The neural network computes two joint
torques from visual sensory signals, joint angles, and
joint angular velocities considering the arm dynamics.

It is known that the trajectory of the voluntary
movement of human hand reaching is almost straight,
and the hand velocity changes like bell-shape. Al-
though there are some exceptions, the properties of
the trajectories obtained by the reinforcement learn-
ing are somewhat similar to the experimental result of
the human hand reaching movement.
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1 Introduction

It has been proposed that the visual sensory signals
are put into a neural network directly and the network
is trained to output appropriate motion signals by re-
inforcement learning[1]. The continuous state space
can be formed adaptively and purposively through the
learning. It shows the possibility that the reinforce-
ment learning is useful not only for the motion plan-
ning, but for the total functions from sensors to mo-
tors, including recognition, attention, and so on. This
is called Direct-Vision-Based Reinforcement Learning.

It has been shown that hand-eye coordination can
be obtained by the combination of reinforcement learn-
ing and neural network in a robot arm reaching task[2].
It has been realized only by adding the joint angles
as input signals in Direct-Vision-Based Reinforcement
Learning. However, the dynamics of the arm was not
introduced, but the joint angular velocities were the
output of the neural network.

In this paper, the dynamics of the arm is intro-
duced. It means that the joint angular velocities are
also the input signals to the neural network, and the
output signals are the joint torques. Finally, it is shown
that the trajectories and tangential velocity curve of
the hand after learning have somewhat similar prop-
erties to the experimental result of the human hand
reaching movement.
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Figure 1: The robot hand-reaching task.

2 Task Setting

2.1 General Setting

Here the setting of the task as shown in Fig. 1 is
described. The visual sensor has 5 � 5 = 25 cells and
the output of each cell is the area ratio occupied by the
target or the robot's hand against its receptive �eld.
Below here, the left-bottom corner of the visual sensor
is supposed to be the origin. The size of each visual
cell is 0:06� 0:06, and the size of the target and hand
is also the same. The target and the hand cannot be
distinguished with each other on this visual sensor.

The target is located randomly in the range where
the whole target can be caught in the visual �eld, i.e.,
0:03 � x; y � 0:27. The initial hand location is also
chosen randomly. In the early phase of the learning,
it is chosen from only around the target, and accord-
ing to the progress of the learning, the range becomes
wider gradually until �0:09 � x; y � 0:39 under the
condition of ((x� 0:12)2+ y

2) � (l1+ l2). So the hand
sometimes cannot be caught by the visual sensor ini-
tially after some trials. The base of the arm (joint 1) is
�xed at (-0.12, 0.0). The both joint angles are limited
in the range of 0 � �i � �, and joint angular velocities
are limited in the range of �� � _

�i � �. The target
is �xed during one trial. But if the hand cannot reach
after many time steps, the trial �nishes with no re-
ward, and in some following trials, the target is moved
towards the hand gradually. The length of each link
is the same as the side of the visual sensor. There is
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Figure 2: Localization of a continuous input signal into
10 signals.

Table 1: Parameters used in the dynamical arm model.

Parameter
Mi (kg)
li (m)
si (m)
Ii (kg m2)
Bi (kg m2/s)
τmax i (N m)

link2

0.2
4.0

link1

0.4
8.0

2.0
0.3
li/2

Mi * li2 / 3.0

no singularity and one-to-one correspondence between
the joint angles and hand location exists.

The inputs of the neural network are the visual sig-
nals, the joint angles, and the joint angular velocities.
Each of the joint angles and joint angular velocities is
localized into 10 signals as shown in Fig. 2. The lo-
calization is useful to approximate a strong non-linear
function. The total number of inputs is 65. There are
two outputs which represent the joint torques, When
the hand touches the target, and the hand tangential
velocity is less than 0:06

p
8, the reward 0.4 is given,

When the joint angle goes over its limit, the penal-
ty -0.4 is given. When the system obtains the reward
or penalty, the trial �nishes. The neural network has
three layers, and the number of hidden neurons is 20.
The output function of each neuron in the hidden and
output layer is sigmoid function whose value range is
from -0.5 to 0.5. The neural network is trained by
Error Back Propagation algorithm.

2.2 Dynamical Arm Model

The di�erential equation that describes the arm dy-
namics is as follows.

�1 = (I1 + I2 + 2M2l1s2cos�2 +M2(l1)
2�
�1

+(I2 +M2l1s2cos�2)��2

�M2l1s2(2 _�1 + _
�2) _�2sin�2 + B1

_
�1 (1)

�2 = (I2 +M2l1s2cos�2)��1 + I2
�
�2

+M2l1s2( _�1)
2
sin�2 +B2

_
�2 (2)

HereMi; li; siandIi represent the mass, the length, the
distance from the joint to the center of mass, and the
rotary inertia of the link i around the joint, respective-
ly. The parameters are shown in Table 1. The equation
is numerically solved by Runge-Kutta method. The
sampling time is 0.02sec in the learning period, and
0.01sec after learning.

2.3 Reinforcement Learning

The basic architecture is the Actor-Critic[3], but only
one layered neural network makes both roles of Ac-
tor and Critic. The algorithm is Temporal-Smoothing
(TS) based reinforcement learning. This is very simi-
lar to Temporal Di�erence (TD) based reinforcement
learning[3]. Only the di�erence is that the curve of the
value function along time axis becomes straight line in
TS on behalf of exponential curve in TD.

Here, Adaptive Slope Method is also employed, in
which the slope of the value function along time axis
is changed adaptively according to the progress of the
learning. The slope corresponds to the discount fac-
tor in TD-based learning. The ideal slope �Videal is
computed as

�Videal = (Vmax � Vmin)=Nmax (3)

where Vmax : the upper limit of the value, here 0.4,
Vmin : the lower limit, here -0.4. For adaptability,
Nmax is computed when reaching the target as

Nmax[i] =

�
N [i] if N [i] > �Nmax[i� 1]
�Nmax[i � 1] otherwise

(4)
where N [i]: time steps to reach the target at the i-th
trial, �: an attenuation factor (0:0 < � < 1:0, here
0.9996). Then by comparing the change of the actual
value to this ideal one, the value at the previous time
V (t� 1) is trained by the training signal as

Vs(t� 1) = V (t� 1)� �(�Videal ��V (t)) (5)

where �V (t) = V (t) � V (t � 1), and � : a training
constant. When the hand arrives at the target, or the
joint angle goes over the limitation, the value is trained
to be 0.4 or -0.4 respectively.

The joint torques are generated in proportion to
the sum of the motion signals m and random numbers
rnd as trial and error factors. The random number is
uniform random number powered by 3, and the ampli-
tude of the random number is adjusted according to
the relative gain of the value function as �V=�Videal.
If the gain is small, the amplitude becomes large. The
motion signalsm are trained by the training signals as

ms =m + �rnd�V (6)

where � : a training constant. These two learnings are
processed in parallel.

3 Simulation Result

Fig. 3 shows some examples of the hand trajectory and
hand tangential velocity curve after learning. Fig. 4
shows the arm con�gurations at the initial hand loca-
tions. From these results, it can be seen that the hand
trajectory is roughly straight and the hand tangential
velocity curve has one peak and is roughly bell-shaped.
Some of them do not look like bell-shape exactly. The
reason may be insu�cient learning due to the insu�-
cient resolution of sensory signals, insu�cient hidden
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Figure 3: Examples of (a) hand trajectory and (b)
hand tangential velocity curve for 12 combinations of
the target and hand location after learning. The large
square in (a) around the target shows the range at
which the hand touches the target. The horizontal
broken line in (b) shows the upper limit velocity at
which the system can obtain the reward.

neurons, or so on. That is because the trajectory is
far from the minimum time trajectory, even though
the minimum time trajectories are expected to be ob-
tained by reinforcement learning.

Fig. 5 shows the torques and joint angular veloc-
ities in the case of Fig. 3 (3) 2, in which the hand
started from (0.06, 0.06) and the target was located at
(0.24, 0.24). It can be noticed that the joint 2 torque
accelerates the joint angular velocity at �rst and then
the torque becomes negative to stop the joint. The
joint 1 moves little, but the joint 1 torque changes a
couple of times between positive and negative values.
Fig. 6 shows the value function and hand motion vec-
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Figure 4: The relation between the hand location and
the arm con�guration.
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Figure 5: The joint torques and angular velocity when
the trajectory is as Fig. 3(3)2.
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Figure 6: The value function and the hand tangential
velocity vector as a function of the hand location when
the target is located at the same as Fig. 3(3)2, and the
initial angular velocities are both 0.0. The large square
shows the visual sensor, and the small square shows the
range where the hand touches the target.

tor as a function of the hand location when the target
is at (0.24, 0.24) and the both joint angular velocities
are 0.0. The motion vector is computed by the torque
output. The peak of the value function can be seen at
the target, and the hand moves towards the peak even
if the other small peak exists around the origin.

Fig. 7 shows the hand trajectory when the hand
is located out of the visual �eld initially. It also can
be seen that the trajectory is smooth and close to a
straight line, and the hand velocity has one peak.

As described above, the hand trajectory is almost
close to the straight line, and the velocity curve has
one peak in many cases. However, in some combina-
tions of the initial hand and target location, the hand
trajectory is not close to a straight line and the hand
tangential velocity curve has more than one peak as
shown in Fig. 8.
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Figure 7: An example of hand movement when the
initial hand location is out of the visual sensor.
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Figure 8: An example in which the hand trajectory is
not similar to straight line and hand tangential velocity
curve has more than one peak.

4 Comparison with Human Movement

It is well-known that in the voluntary movements of our
hand to reach some target which is not located so far,
the trajectory is almost straight and the velocity of the
hand forms a bell shape along the time axis[4]. It is also
reported that even when the subject is requested that
the hand reaches the target as soon as possible, the
trajectory is almost straight line and the hand velocity
changes like bell-shape[5].

In general, it has been thought that the generation
of human movement is composed of three processes,
trajectory planning, coordination transformation from
the work space to joint space, and generation of mo-
tor command considering its dynamics. Under this
idea, some models of the trajectory planning have been
proposed[6][4][7]. In these models the trajectory of
the hand is obtained by solving the optimization prob-
lem under the cost function like minimum commanded
torque change and so on. So, iterative computation is
necessary every time when a new reaching is required.

When comparing the trajectory after learning in
this paper with that obtained by the conventional mod-
els, it is not so closer to the human's. However, in our
model, iterative computation is not necessary after the
learning even though many trials (here 1,000,000 trial-
s) for learning are necessary.

Furthermore, it is not enough to say that our model
is a model of human reaching movement, due to many
insu�cient points, e.g., the �xed visual sensor, the u-
niform visual sensory cells, no impedance based on the

redundant muscles, and so on. It is expected to be
improved in the future.

5 CONCLUSION

The hand-reaching task was achieved by the combi-
nation of reinforcement learning and neural network.
The hand trajectory and tangential velocity was rough-
ly similar to the human's. The authors think that the
possibility could be shown that reinforcement learning
works in human brain to acquire the arm movement.
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