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Abstract

In an experiment of multi-trial task to obtain a reward, reward expectancy neurons, which responded only in the non-reward trials that

are necessary to advance toward the reward, have been observed in the anterior cingulate cortex of monkeys. In this paper, to explain the

emergence of the reward expectancy neuron in terms of reinforcement learning theory, a model that consists of a recurrent neural-

network trained based on reinforcement learning is proposed. The analysis of the hidden layer neurons of the model during the learning

suggests that the reward expectancy neurons emerge to realize smooth temporal increase of the state value by complementing the neuron

that responds only in the reward trial.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, in an experiment of the multi-trial task using a
monkey in which several successful trials are required until
it gets a reward, two types of neurons are observed in the
anterior cingulate [5,4]. The one type (reward proximity
type) responded more vigorously as the monkey ap-
proached the reward. The other type (reward expectancy
type) increased its activity in each trial toward the reward,
but dropped its activity before the reward trial. The
anterior cingulate cortex is located in the medial frontal
cortex. It has neural connections with various parts of
frontal and limbic areas, and so can be a good candidate
for integrating various information related to motivational
process. The reward proximity neuron can be interpreted
as the state value in reinforcement learning. On the other
hand, it has been difficult to explain the emergence of the
reward expectancy neuron by reinforcement learning
e front matter r 2006 Elsevier B.V. All rights reserved.
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theory because it did not respond in the reward trial.
However, we thought that the reward expectancy neuron
should be deeply relevant to the state value in reinforce-
ment learning. Thus, in this paper, we hypothesized that
reinforcement learning plays an important role not only in
the basal ganglia, but also in the anterior cingulate cortex,
and the reward expectancy neuron is one of the inter-
mediate representations to generate state value in reinfor-
cement learning. To investigate this hypothesis, we used a
model that consists of a recurrent neural-network (RNN)
trained based on the actor–critic type reinforcement
learning [1], and analyzed the behavior of the hidden-layer
neurons during learning. By the same approach, some
neuronal responses in the intraparietal sulcus have been
already explained well in terms of reinforcement learning
theory [3].
2. Experimental result [5,4]

In the first stage, a monkey is trained a single visual color
discrimination task [5,4]. At the beginning, a white bar
called visual cue is presented at the upper edge of a black
monitor. When the monkey touches a bar in the monkey
chair, the fixation point presented at the center of the
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monitor changes to the red target stimulus. After a varying
waiting period, the target color becomes green, which
instructs the monkey to release the bar. If the monkey
releases the bar within 1 s, the target turns blue to indicate
that the trial is successful, and the monkey can get juice as
a reward. After the monkey learned this single-trial task,
the multi-trial reward schedule task (multi-trial task) is
introduced. In this task, the reward is given to the monkey
when it performs 1–4 trials correctly. The necessary
number of trials to get the reward is determined at random.
Since the visual cue becomes brighter as the monkey
approaches the reward trial, it can recognize the number of
trials remaining for the reward.

The example responses of anterior cingulate neurons
are shown in Fig. 1. The responses of the neuron in
Fig. 1(A)(B) increased in the non-reward trials, but
decreased before the reward trial. The responses of the
neuron in Fig. 1(C),(D) decreased after the reward, and
they can be interpreted to express the distance to the
reward. The neurons like (C) and (D) can be explained
reasonably as the state value by reinforcement learning. In
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Fig. 1. The responses of the anterior cingulate neurons. Th

Fig. 2. The proposed model usin
this paper, we investigate why the reward expectancy
neurons such as (A) and (B) emerged in terms of
reinforcement learning theory.

3. Proposed model

The architecture of the model proposed in this paper is
shown in Fig. 2. The model is consisted of one RNN whose
input is an observation vector. The actor–critic [1] is
employed as a reinforcement learning method. The critic
output generates a state value, and the actor outputs
generate action commands. From the necessity to effi-
ciently modify all the synapse weights based on reinforce-
ment learning even in the hidden layers as a model of the
frontal cortex, error-back-propagation type supervised
learning was employed, and the training signals were
generated autonomously according to reinforcement learn-
ing. Thus, it is expected that necessary functions emerge
purposively, autonomously and in harmony as an inter-
mediate representation to generate appropriate state value
and actions [2].
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TD-error r̂t is expressed by

r̂t ¼ rtþ1 þ gV ðxtþ1Þ � V ðxtÞ, (1)

where r is the reward (0.9 or 0.0), V ðxtÞ is the critic output
(state value), xt is the observation vector, and g is a
discount factor. The neural network is trained by the
training signals Vs;t and as;t for the critic and actor,
respectively. Those are generated based on reinforcement
learning as

V s;t ¼ r̂t þ V ðxtÞ ¼ rtþ1 þ gV ðxtþ1Þ, (2)

as;t ¼ aðxtÞ þ r̂t rndt, (3)

where aðxtÞ is the actor output vector, rndt the exploration
factors added to aðxtÞ.

As for the neural-network structure, the number of
layers is four, and Elman-type RNN is introduced to deal
with the past information. Furthermore, the direct
connections from the input layer to the output layer that
corresponds to the basal ganglia were added. The frontal
cortex is generally considered to realize high-order func-
tions and also short-term memory as seen in dorsolateral
prefrontal cortex. Here, the information that can be
approximated enough as a linear combination of the input
signals is assumed to go directly from the input to the basal
ganglia, while the complicated nonlinear transformation is
assumed to be done by going through the frontal cortex
that is modeled as the hidden layers. Since a strong
nonlinear transformation is required to generate the
response of reward–expectancy neurons in the anterior
cingulate from the visual cue signal, at least four-layer
structure is necessary after adding the output layer as the
basal ganglia. The number of neurons in each layer from
the input layer to the output layer is 8, 20, 10 or 4,
respectively. The input signals of the neural network are
assumed to be the signals after some pre-processing in the
visual cortex or some other areas. The RGB signals of the
visual cue are inputted into the first three input neurons,
but each value is the same to the others since the visual cue
is gray scale. The value was 1.0 in the single-trial task. In
the multi-trial task, it became larger as it approached to the
reward such as 0:1! 0:4! 0:7! 1:0. The next three
inputs indicate the RGB signals of the target color. The
next one represents by the binary values whether the
monkey touched the bar or not. The last input signal is 1
when the reward is given, and it is 0 otherwise. By
considering the rate coding, the activation function of each
neuron in the hidden and output layers is the sigmoid
function whose value ranges from 0.0 to 1.0.

One of the output neurons is used as critic, and the other
three output neurons are used as actor. One of the three
actions, ‘‘keep’’, ‘‘touch’’, or ‘‘release’’, is assigned to each
actor neuron, respectively. An action is selected stochas-
tically by comparing the values after adding the exploring
factor rndt to the actor output vector aðxtÞ. Each factor of
rndt is a uniform random number between �0:3. BPTT
(Back propagation through time) [6] is used as a supervised
learning algorithm for the RNN, and the truncated trace
time to the past was set to 80 steps. Sampling rate, i.e., one
step, was set to 100ms. Furthermore, when the task was
changed from the single-trial task to the multi-trial task,
the discount factor g was changed as 0:96! 0:976 since the
necessary time steps to the reward becomes large. In this
simulation, when the learning was done almost completely
in the single-trial task, it moved to the multi-trial task.
Here, the number of episodes in the single-trial task was
16 500. An episode is defined as a sequence until the
monkey gets the reward.

4. Simulation result

The response change of some neurons after 18 500
episodes, in other words, soon after switching to the
multi-trial task is shown in Fig. 3. The results are shown
for the case when the reward is given after 4 successful
trials. The response of the critic is shown in Fig. 3(a). If the
learning is performed ideally, the critic output increases
exponentially and smoothly toward the time when the
reward is given. However, in this case, the upward trend
toward the reward can be seen only in the reward trial after
6 s. The responses of the upper-hidden neurons 3 and 9 are
shown in Fig. 3(b),(c). Judging from the connection weight
to the critic, the upper-hidden neuron 9 made a large
contribution to the critic. In the non-reward trials, a large
negative TD-error appears because the reward cannot be
obtained on the contrary to the expectation. Therefore, it is
thought that the critic response was depressed greatly in the
non-reward trials, and that is the reason why the upper-
hidden neuron 9, which is called reward-trial neuron here,
responded only in the reward trial.
Next, the responses after 30,000 episodes are shown in

Fig. 4. Comparing the critic output as shown in Fig. 4(a)
with the previous one as shown in Fig. 3(a), it can be seen
that the critic output is increasing even before the reward
trial. The responses of the upper-hidden neurons are shown
in Fig. 4(b),(c). In this case, the neuron that responded only
in the non-reward trial emerged as shown in Fig. 4(b). The
weight from the upper-hidden neuron 3 to the critic was
small around the 18 500th episode, but it became large
around the 30 000th episode. The upper-hidden neuron 3 is
considered to be equivalent to the reward expectancy
neuron in the experiment using a monkey. Then, in order
to examine how this neuron is represented, the response of
the lower-hidden neuron contributing to the upper-hidden
neuron 3 was observed. As shown in Fig. 4(d), the response
of the lower-hidden neuron 15 is depressed in the reward
trial. It had a positive connection to the upper-hidden
neuron 3 and a negative connection to the upper-hidden
neuron 9. From the above result, it can be thought that the
reward expectancy neuron emerged to realize the smooth
temporal increase of the critic output by complementing
the reward trial neuron. The lower-hidden neuron that also
contributes to the reward-trial neuron makes it possible for
the reward expectancy neuron to generate the intermediate
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Fig. 4. The response of some neurons after 30 000 episodes. (a) critic, (b) upper-hidden3, (c) upper-hidden9, and (d) lower-hidden15.
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Fig. 3. The response of some neurons after 18 500 episodes. (a) critic, (b) upper-hidden3, and (c) upper-hidden9.
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representation in spite of a strong nonlinear transforma-
tion from the visual cue signal.

5. Conclusion

In this paper, to explain the emergence of the reward
expectancy neuron in terms of reinforcement learning
theory, a model that consists of a RNN-trained based on
the actor–critic reinforcement learning is proposed. In the
simulation of the model, a neuron that can be considered as
a ‘‘reward expectancy neuron’’ was observed in the hidden
layer. The analysis of the result suggests that it emerged to
complement the neuron that responds only in the reward
trial for realizing the smooth temporal increase of the critic
output. The neuron responding only in the reward trial
emerged to realize quite different critic output between
non-reward trial and reward trial even though the input
signals are similar between them, and also that makes it
possible to realize the response only in the non-reward
trials in the reward expectancy neuron.
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