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Communication:
     a very comprehensive function!

    End-to-End Reinforcement Learning
     using a (Recurrent) Neural Network.

  Context
  Sensor signals

   What information is communicated
   How the information is
          represented in signals

Communication

General Approach

isolated and learned

committed to
       other functions

Our Approach

The entire function should be
comprehensively learned in each agent

(since 1999)

    Completely Decentralized and
     Independent Learning
   Rewards or Punishments are not
    given to communication itself, but
    only for the result of actions
    after communication.

3 our representative works are introduced here
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1. Dynamic Communication (1999)

Negotiation Examples after learning
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2. Signal Discretization (2005)
* Signals are sent and received two times
* A reward is given to each agent
   only when the receiver reaches the goal

* The receiver can reach the goal in one step
   from any position but has to avoid overshooting
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Learning in noisy environment
   -->  Acquisition of noise-tolerant representation

signals from sender motion by receiver
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Noisy Signal Task

Recurrent Neural Network and Signal Flow

Change of Signals and Motion after learning by noise addition

Actor-Critic (TD) 
+

RNN (BPTT)
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3. Grounded Communication (2011)
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The sender network was learned
to control the robot directly
before communication learning
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A sample episode after learning

Signals and motion after learning
same relative
location

similar sounds

ex.
same color
circles
in the figure

purposive
representation

separated separated

comprehensively learned
from sensor signals

[Shibata, 1999] [Shibata, 2005] [Shibata and Sasahara, 1999]
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Functions Emerge!
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[Shibata, 1997]  [Hassabis (Google DeepMind), 2016]  

Function Emergence
through End-to-End RL

The direction for Artificial General Intelligence!
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Please refer
    to the poster No. 20!

http://shws.cc.oita-u.ac.jp/shibata/home.htmlkatsunarishibata@gmail.com
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You can find the original paper
for each work
at the bottom of this poster.
Feel free to take it back.
Little is known about our works,
and so Thank you for referring
them in your papers!
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