
1

Differential Trace in Learning of Value Function
with a Neural Network

Katsunari Shibata and Shuji Enoki
Department of Electrical and Electronic Engineering,Oita University

700,Dannoharu,870-1192 Oita JAPAN
shibata@oita-u.ac.jp magic.hands1988@gmail.com

Abstract : Reinforcement learning has a fatal problem of slow learning. To
solve this problem, Eligibility-trace has been widely used. However, since the
trace throws away old information and takes the present information constantly
not depending on whether the information is important or not, long-term learn-
ing and short-term learning are incompatible. In this paper, a novel approach
called ”Differential trace” is proposed, in which the trace is not updated con-
stantly, but according to the change of each neuron’s output in a neural network.
In other words, the time axis is subjectively adjusted in each neuron. The char-
acteristics of the Differential trace could be observed in the learning of state
value in a simple task where one-dimensional continuous environment is divided
into 100 states. The learning performance is better in total than the case of
Eligibility trace with either of two decay rates.

1 Introduction

In recent years, reinforcement learning[1] which is a way to learn appropriate
actions through trials and errors based on reward and punishment as a scalar
signal, has been attracting attention because of its autonomous learning abil-
ity. It has been shown that through reinforcement learning, necessary functions
emerge in a neural network (NN) that connects from sensors to motors[2]. How-
ever, reinforcement learning has a fatal problem of slow learning due to the
exploration and also extraction of important information from a huge amount
of spatio-temporal sensor signals. In the original algorithm, which is called ”On-
estep” method here, only the value function at the previous time step is learned
from the present value and reinforcement signal, and that is also one major rea-
son of slow learning. To solve this problem, Eligibility-trace (E-trace)[3][4] has
been widely used that enables to update the values for the past series of states in
real-time by holding the information about the visited states in the past. How-
ever, the past information in the E-trace decays constantly regardless of whether
it is important or not. Therefore, if the trace is set to decay slowly in order to
hold the past state, since taken information for a moment is relatively small than
the whole information held in the trace, learning for quick motions becomes slow.
On the other hand, if the trace decays quickly, the past information can be held
only in a short period.

2

Here, for example, suppose that you are driving a car. Do you think as ”go
straight, go straight ..., go straight, turn right,” with a fixed-time interval? No
one might think as such. Rather, you must think as ”now go straight, and turn
right at the corner with the second signal” and so on. The thinking in the former
way is obviously inefficient. Learning of action planning for one day with the
sampling rate of 100 msec is very inefficient, while fine actions cannot be learned
with the sampling rate of one minute. Accordingly, as in the latter example,
important points should be focused and trivial points should be ignored. This
means that time passes slowly for the important state and passes quickly for the
trivial state. That is to say, if the time axis is adjusted subjectively, learning is
expected to be more efficient.

When a robot learns something in the real world, it obtains sensor signals
from various sensors, and they change from moment to moment. The quan-
tity of information is huge, and so it is a difficult and intelligent task to know
what is important among it. However, a neural network has an ability to rep-
resent important information in its hidden layer through learning without any
directions from humans. Furthermore, the division of roles among hidden neu-
rons progresses through learning. It can be said that each neuron represents the
state subjectively. In the proposed method in this paper, the state change that
is the time derivative of the output in each neuron is utilized to adjust how
much present information is taken into the traces. The trace, the authors call
”differential trace (D-trace)”. In each neuron, when the output changes largely,
considering that the state changes largely, the traces throw away the information
about the old inputs and take the present inputs largely. When the output does
not change so much, it is considered that the state does not change largely and
there is no need to take the present inputs into the trace. In this way, each neu-
ron takes the inputs in the traces only when its output changes, and keeps the
previous traces when its output does not change. Furthermore, as mentioned,
each neuron responds different events due to the division of roles among hidden
neurons, and so the information held in the traces is different among the hidden
neurons. The D-trace promotes the learning for the past event, and the learning
promotes the effective memory of the past in the D-trace. The synergetic effect is
expected to accelerate reinforcement learning when considering life-long learning
where the knowledge or representation acquires through learning can be utilized
in the following learning.

In this paper, the algorithm of D-trace is formulated comparing with the
E-trace and its characteristics are observed in a simple task in which only value
function is learned.

2 “Differential trace” vs. “Eligibility trace”

In this section, E-trace, D-trace and the learning of value function using the
traces are formulated when they are implemented in a layered neural network(NN).
Only the learning of value function is focused and action selection is not consid-
ered here. In the original ”Onestep” reinforcement learning, each weight value

3

w in the neural network are updated to decrease TD(Temporal Difference) error
as

Et =
1
2

TDerr2
t (1)

where TDerrt = rt+1 + γ ON1,t+1 − ON1,t

∆wkji,t = −η · ∂Et

∂wkji
= η · TDerrt · ∂ON1,t

∂wkji

= η · TDerrt · ∂ON1,t

∂Ukj,t
· ∂Ukj,t

∂wkji

= η · TDerrt · Ckj,t · Ok−1 i,t (2)

where Ckj,t =
∂ON1,t

∂Ukj,t

where subscript k, j, i indicate the layer number, the number of signal-receiving
neuron, and the number of signal-sending neuron in the NN. N indicates the
output layer, and there is only one output neuron in the layer that is learned
to represent the state value. U and O is the internal state and output of a
neuron, and O = sigmoid(U) where sigmoid is the sigmoid function as an
output function. r is a given rewards, γ is a discount factor and η is a learning
rate. Ckj,t indicates the contribution of the neuron j in the layer k to the output,
and that is similar to propagated error δ in BP (Error Back Propagation) but no
error information is included. It can be computed through backward propagation
from the output neuron in the same way as δ. In this algorithm only the present
influence of the weight to the output neuron ∂ON1,t/∂wkji is considered and
then the NN is updated so as to reduce the TD error for the present state.

On the other hand, using E-trace e that accumulates the past information
in it as a discrete approximation of the first-order lag, the values for the past
states also can be updated in real-time as

ekji,t = γλ ekji,t−1 + (1 − λ) Ckj,t · Ok−1 i,t (3)
where λ ∈ [0, 1)

∆wkji,t = η · TDerrt · ekji,t (4)

where λ is a constant to decide how fast the E-trace decays. If λ is large and
close to 1.0, the E-trace decays slowly. Since λ is a constant, the E-trace decays
constantly. When E-trace is formulated, generally, no coefficient is multiplied to
the second term in Eq(3). However, here, (1 − λ) is multiplied to make the E-
trace compatible with the other cases. By this, if Ckj,t · Ok−1 i does not change
for a long time, the E-trace converges to the value.

Finally, the D-trace d is updated according to the output change of each
neuron instead of the constant λ as

dkji,t = γ (1 − |∆Okj,t|) dkji,t−1 + |∆Okj,t| Ckj,t · Ok−1 i,t (5)
where ∆Okj,t = Okj,t − Okj,t−1

4

∆wkji,t = η· TD errt · dkji,t. (6)

When Eq(5) is seen as the difference approximation of first-order lag, large ∆O
means small time constant, and the trace value is replaced largely by the present
input. It can be considered that the time passes fast. When ∆O is small, the
time constant is large, and the time passes slowly. In other words, it is possible
to adjust the time axis flexibility according to the change of subjective state
∆O. Since ∆O is calculated in each neuron, it is known that the information
that each trace holds is different among neurons.

Fig.1 illustrates the temporal change of E-trace and D-trace. It can be seen
that when the output changes, the present input is taken into the D-trace, while
the D-trace value is held when the output does not change except for the decay
by the discount factor γ.

Output Okj

Input for the trace CkjO k-1 i

D-trace Dkji

Okj

wkji

Ok-1 i

kj

k

k-1

Ok-1 i

Ckj

e

d

j

i

Ckj

Okj

dkji

ekji

t

t

t

t

Fig. 1. Comparison of temporal change between E-trace and D-trace.

3 Task

In this section, a task in which the characteristics of each trace are easy to be
seen is described. As shown in Fig.2, an agent just moves rightward from the
left end to the goal at the right end constantly for 10,000 steps with no action
selection. When it reaches the goal, reward 1.0 is given. The agent learns the
state value during the episode using a 3-layer neural network. The way from start
to goal is divided into 100 discrete states and it takes 100 steps to go through
each state. There are two types of input signals that respond locally only when
the agent is on one state. One type of them takes the value of 1 when the agent
is on the corresponding state, and 0 otherwise. The other type inputs change
its value linearly from 0 to 1 over 100 steps on the state so that the agent can
identify the place in the state. In this task, since each input represents only local
information and the generalization ability of the neural network does not work
effectively, the effect of holding the past state in the traces can be seen easily.

5

output layer

1unit

10000steps = 100 steps ×100 states

Agent

Start Goal

hidden layer

30units

input layer

200units

field

100states

Fig. 2. A task to observe the characteristics of E-trace and D-trace.

Parameters used in this learning are shown in Table 1. The learning rate
also influences the learning speed, and is roughly optimized through trials and
errors. The reason why it is small in the case of Onestep is that some oscillation
is observed when the learning is done with the same rate (2.0, 20.0) as the other
cases. The discount factor γ was set so as that the state value is 0.2 at the first
step and 1.0 at the goal. The sigmoid function whose value ranges from -0.5
to 0.5 is used. The value is linearly transformed to the range of [0.0, 1.0] from
the range of [-0.4, 0.4] in the output of the NN. The value is limited from -0.4
to 0.4 even though it is less than -0.4 or more than 0.4 originally. Simulation
results are compared among ”Onestep”,”E-trace”and ”D-trace”, and in the E-
trace case, the results for two different decay rates λ = 0.999 and λ = 0.99 are
shown.

Table. 1. Learning parameters

number of neurons in each layer 200-30-1

learning rate Onestep 1.0
(hidden → output) E-trace,D-trace 2.0

learning rate Onestep 10
(input → hidden) E-trace,D-trace 20

initial weight of neurons random [-1.0, 1.0]

reward 1.0

6

4 Learning result

Fig. 3 shows the learning curve for each case. The vertical-axis indicates the
absolute value of the difference between actual state value and the ideal one
that is decided from the discount factor γ. Each plot shows the average of the
error over one episode.

0.0

0.1

0.2

A
v
e
ra

g
e
 e

rr
o
r

0 200 400 600 800 1000

One step

E-trace (λ=0.999)
D-trace

E-trace (λ=0.99)

Number of episodes

Fig. 3. Change of the average error between the network output and ideal state value
during learning is compared among Onestep, E-trace and D-trace.

The learning speed is slower in Onestep learning than the cases of using a
trace. In the case of E-trace(λ = 0.99), learning is faster than in the Onestep
learning, but is slower than the other two trace learning. As for the other two
cases, learning is slightly faster in the case of E-trace(λ = 0.999) at first, but, the
difference in D-trace becomes smaller than the case of E-trace(λ = 0.999). In the
case of Onestep learning, the difference becomes larger again at around 700th
episode after once it became small. Same phenomena are observed also in other
cases although the increase is not so large. It was found that such phenomena
occur by the influence of local representation of input signals and non-linearity
in each neuron. Small learning rate decreases the influence, but learning becomes
slow.

To show how the learning progresses in each case, Fig.4 shows the state
value at the 100th episode. In the case of Onestep, the value is formed only after
around the 7,000th step, and in the case of E-trace(λ = 0.99), the range that the
value is formed is a bit wider than the case of Onestep, but appropriate value
does not reach in the early states.

On the other hand, in the cases of E-trace(λ = 0.999) and D-trace, the
rough shape of the value is formed over whole the episode. However, large high-
frequency components are seen in the case of E-trace(λ = 0.999). It is confirmed
that the shape is influenced by the initial connection weights. This means that
E-trace with a large λ is good at forming a rough shape of value function in a
long range, but is not good at forming appropriate value change in a short range.

7

0 2000 4000 6000 8000 10000

C
ri
ti
c

Number of step

C
ri
ti
c

Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

(a) Onestep

0 2000 4000 6000 8000 10000

C
ri
ti
c

Number of step

C
ri
ti
c

Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

(b) E-trace (λ=0.99)

0 2000 4000 6000 8000 10000

C
ri
ti
c

Number of step

C
ri
ti
c

Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

(c) E-trace (λ=0.999)

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

C
ri
ti
c

Number of stepNumber of steps

C
ri
ti
c

(d) D-trace

Fig. 4. Comparison of the state value at the 100th episode.

In the case of D-trace, high-frequency components are not so large, and both
local and global learning seem to be progressing. Due to the limited number of
pages, the result is not shown, but in the case of E-trace for an intermediate
decay rate λ = 0.996, high-frequency component is at the same level as in the
case of D-trace, but the global shape is closer to the case of λ = 0.99.

Fig. 5 shows how D-trace changes as time goes by together with ∆O that is
the temporal change in the output of the hidden neuron. Each hidden neuron
has one trace for each input, and 200 traces in total. Since the trace shown in
Fig. 5 is for the binary input from the 18th state, the value largely increased
when the agent reached the 18th state at the 1801st step. After that, the trace
increased for 100 steps because the input is 1.0, but the increase ratio is not so
large due to the small ∆O. After leaving the state, the value mainly decreased at
every 100 step when a state transition occurs. The reduced value is not constant,
but depends on the value of ∆O.

Next, it is observed how each trace holds the past information. Fig. 6 shows
the trace values of one hidden neuron at the final step in the 100th episode for
the 4 cases. Fig. 6 shows the traces for the 100 binary inputs that take always 1.0
when the agent is on the corresponding state. Each trace takes the product of
contribution to the output C2j and the input O1,i. The contribution C2j depends
on the weight to the output and also the derivative of output function in the

8

0.001

0.002

0.003

1000 2000 3000 4000

v
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

number of stepNumber of steps

D
-t
ra
c
e

0.000

(a) change of a D-trace

0.6

∆
O

0.2

0.0

0.4

1000 2000 3000 4000
Number of steps

(b) change of ∆O

Fig. 5. Change of a D-trace and ∆O of one hidden neuron in the 1000th episode. The
D-trcae is for the input whose value is 1.0 at the 18th state.

40 60 80 100

number of stateState No.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

v
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

V
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

E
-t
ra
c
e

(a) E-trace (λ=0.99)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

v
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

V
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

E
-t
ra
c
e

40 60 80 100

number of stateState No.

(b) E-trace (λ=0.999)

-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0

v
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

V
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

D
-t
ra
c
e

40 60 80 100

number of stateState No.

(c) D-trace in the 2nd neuron

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

v
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

V
a
lu
e
o
f
h
id
d
e
n
tr
a
c
e

D
-t
ra
c
e

40 60 80 100

number of stateState No.

(d) D-trace in the 25th neuron

Fig. 6. The trace values for the binary inputs from the 100 states in one hidden neuron
at the last(10000th) step in the 100th episode.

hidden and output neurons. Therefore, they influence the trace values, but the
rough tendency can be seen about which input signal is taken more.

It can be seen that in the case of λ = 0.99, the value of E-trace for the states
close to the goal is large, but that has decayed for the distant states from the
goal. On the other hand, in the case of λ = 0.999, the value is not so large
even for the states close to the goal, but the decay is slow and so the trace

9

for the distant state from the goal also has some value. D-trace holds the past
information, but in Fig. 6(c), the trace for the input from the 98th state, which
is the 3rd state from the goal, takes a larger value comparing with the other
trace. The profile is different from that in a different hidden neuron in Fig.6(d).
This means that each hidden neuron can hold different past information, and
that is supposed to be one reason for the efficient learning.

5 Conclusion

In this paper, a novel approach for learning of value function called ”Differential
trace (D-trace)”was proposed. That enables to hold the important information
for each neuron and to learn the value function for past states efficiently in real
time. In the learning of a simple task in a one-dimensional continuous environ-
ment with many local sensors, the characteristics of D-trace was observed, and
it was confirmed that the learning performance is better in total than the case
of Eligibility trace in either case of fast decay or slow decay.

In the real world, there is a vast amount of information, and so subjective ad-
justment of time axis must be required to extract important events and to learn
effectively. Accordingly, D-trace has a very large potential in the autonomous
learning in the real world, and further investigation is strongly demanded. Sim-
ilar concept has been already introduced in the learning of a recurrent neural
network, and it was shown that it works even though the computational cost
and necessary memory capacity is as small as O(N2) where N is the number of
neurons[5][6]. The integration of the method and D-trace is expected.

Acknowledgment

This work was supported by JSPS Grant-in-Aid for Scientific Research #23500245.

References

1. Rumelhart, D. E. et al., Learning Internal Representation by Error Propagation,
Parallel Distributed Processing, MIT Press, Vol. 1, pp. 318-364 (1986)

2. Shibata, K., Emergence of Intelligence through Reinforcement Learning with a Neu-
ral Network, Advances in Reinforcement Learning, Abdelhamid Mellouk (Ed.), In-
Tech, pp.99-120 (2011)

3. Sutton, R.S. & Barto, A. G., Reinforcement Learning, MIT Press, pp163-192 (1988)
4. Bakker,B., Zhumatiy,V, Gruener,G.& Schmidhuber,J., A robot that reinforcement-

learns to identify and memorize important previous observation. Intelligent Robots
and Systems, pp230-235 (2003)

5. Shibata, K., Ito, K. & Okabe, Y., Simple Learning Algorithm for Recurrent Net-
works to Realize Short-Term Memories, Proc. of IJCNN (Int’l Joint Conf. on Neural
Networks), pp. 2367-2372 (1988)

6. Samsudin, M. F., Hirose, T., & Shibata, K., Practical Recurrent Learning (PRL)
in the Discrete Time Domain, Neural Information Processing of Lecture Notes in
Computer Science, Vol. 4984, pp. 228-237

