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Abstract. “Concept” is a kind of discrete and abstract state represen-
tation, and is considered useful for efficient action planning. However, it
is supposed to emerge in our brain as a parallel processing and learning
system through learning based on a variety of experiences, and so it is
difficult to be developed by hand-coding. In this paper, as a previous step
of the “concept formation”, it is investigated whether the discrete and
abstract state representation is formed or not through learning in a task
with multi-step state transitions using Actor-Q learning method and a
recurrent neural network. After learning, an agent repeated a sequence
two times, in which it pushed a button to open a door and moved to the
next room, and finally arrived at the third room to get a reward. In two
hidden neurons, discrete and abstract state representation not depending
on the door opening pattern was observed. The result of another learning
with two recurrent neural networks that are for Q-values and for Actors
suggested that the state representation emerged to generate appropriate
Q-values.

1 Introduction

While we get a huge amount of sensor signals with eyes, ears and other sensors,
we can evaluate a state accurately and act appropriately. However, we are not
conscious of each individual sensor signal, but rather represent a state with an
abstract representation such as “room” and “corridor”, and make an action plan
as “open the door, go out the room, and walk along the corridor”. Such discrete
and abstract state representation must make our learning efficient and can be
an origin of intelligence.

First of all, why can we recognize a “room” even though there are many
kinds of rooms? For example, if the wall color is different, the sensor signal will
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be different completely. What we usually see with our eyes is only part of a
room, and the sensor signals change largely by eye, head or body movement. For
these reasons, it is highly unlikely that such abstract representation is formed
only from the huge amount of time series sensor signals. We probably recognize
the “room” through the accumulation of action learning in a room where we
“work or rest”, “open a door to go out the room” and “open a window on a hot
day”. The authors call such discrete and abstract representation “concept”. If
“concept” as a high-order function is given to a robot, it is expected to behave
appropriately even in the real world with various situations.

However, it is hardly possible for us to design each “concept” manually,
because it is difficult to define it in words. For example, the place where there
are walls, doors and windows is not always a “room”. We recognize a place as
a “room” based on the parallel consideration from many aspects, and learning
from experiences with our brain as a massively parallel processing and learning
system seems to enable it. Therefore, the concept formation is difficult to be
achieved by hand-coding.

Tani et al. have proposed a method by which abstract state representation
from the time series data as inputs emerge through learning. In the method,
the next sensor signals are predicted from the present sensor signals and mo-
tor commands, and modular recurrent neural networks (RNNs)[1] or one RNN
consisting of neurons with different time constants[2] are introduced. However,
generating appropriate actions or achieving a goal is not considered. In their
paper, the input was simple sensor signals, but if a visual sensor is used in the
real world that is full of trivial information, it must be difficult for the system
to predict all the input at every moment. Furthermore, as mentioned above, it
seems impossible to divide the time series of huge sensor data into states such as
“room” and “corridor” without considering the necessity for action generation.

Therefore, a method is suggested in which a neural network (NN) and rein-
forcement learning (RL) are combined for the emergence of abstract represen-
tation. RL enables to learn appropriate actions for a purpose such as getting a
reward and avoiding a penalty. Therefore if RL is combined with a NN with a
parallel structure, the NN is optimized based on RL, and the necessary informa-
tion is extracted in the NN without any explicit directions. It is expected that
the discrete and abstract state representation emerges in the NN as extracted
necessary information. The authors group has been aiming it already, but in the
previous works, binary signals that respond at a state transition were given as
inputs, and/or a task with one-step state transition was employed[5][6].

In this paper, as a previous step of the “concept formation”, it is aimed to
form a discrete and abstract state representation in a task with multi-step state
transition. Then, a simulation task is employed in which an agent moves in an
environment with several rooms and doors, and the emergence of discrete and
abstract state representation in which the state changes by the door opening is
investigated in the hidden layers in a RNN after the mapping from the continuous
sensor inputs to the action is learned in it by RL.
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2 The learning system

Here, as shown in Fig. 1, a 5-layer Elman-type RNN is used to learn a task with
multi-step state transition. The RNN is trained with back propagation through
time (BPTT)[3] using the training signals generated by RL. As for RL, Actor-
Q4] is used in which Q-learning for discrete action selection and Actor-Critic for
the continuous motion are combined. Therefore, in the RNN, there are two types
of outputs: for the Q-values and for the Actors. At first, a discreate actions is
selected based on the Q-values, and then if the action needs a continuous motion,
the motion is generated based on the Actors. The Q-value for the previous action
is updated using the Q-value for the present action and reward. The training
signal for the Q-value Q)4 4, + is generated as

Qd ayt = Qa,(s¢) + T'Derrory = ryq1 + 7y max Qa(st41) (1)

TDerrory = reyp1 + 7y max Qa(st41) — Qa, (st) (2)

where v indicates a discount factor, and 7, s¢, a; indicates a reward, state
vector, and action at time ¢ respectively. The Actor output is updated using the
TD-error derived from the Q-value on behalf of the critic in Actor-Critic. The
training signal for the Actor Ay, is generated as

Ay = A(s¢) + TDerror, x rnd; (3)

where A(s;), rnd; indicates the Actor output vector and a random number
vector that is added to the Actor output vector for exploration to generate the
actual motion commands.

3 Task

As a previous step of the “concept-formation”, a task with multi-step state tran-
sition is learned to examine the emergence of discrete and abstract representation
from continuous inputs. As shown in Fig. 2, there are several rooms and doors
in the task environment, and an agent is initially located at a random place in
the central room. When it pushes a switch located at the center of each room,
one of the surrounding doors that connects the present room with a next room
is opened at random. An episode terminates when the agent passes two rooms
and finally arrives at the third room. The agent gets a reward when it arrives at
the third room. In the early stage of learning, the agent takes an action almost
at random because all the outputs are 0.0 by setting all the initial connection
weights to the output layer to 0.0. Through leaning, only with the reward at
the goal, the agent is expected to generate appropriate actions and the abstract
representation that is useful to achieve the goal.

As shown in Fig. 1, the agent detects the distance to the walls using 8 sensors.
Each sensor signal represents the distance from the agent to the wall in one of the
eight directions in the form of e~3% where d; indicates the distance to the wall
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in the i-th direction. The agent also detects the information about the closest
switch. The distance from the agent to the switch is also represented as e3¢
and the angle of the switch direction was given as sinf and cosf. Thus, the
number of inputs in the RNN was 11 in total. This task needs memory because
after opening a door in the second room, the agent cannot discriminate the first
room and the third room without referring the past wall sensor signals.

As shown in Fig. 1, the number of outputs in the RNN is 4. T'wo of them are
used as the Q-values of “move” and “push”, and the other two are used as the
Actors for the agent move in the x- and y-directions when the action “move” is
selected. The size of the move vector is limited in the circle with the radius of
0.5 around the agent.

When the agent moves and arrives at the third room within 35 steps for
30,000 consecutive episodes, learning finishes. If the agent does not arrive at
the third room as the goal within 200 steps, the episode is terminated. As an
action selection method, “Boltzmann selection” is used, and the temperature is
gradually decreased from 1.00 to 0.01 as the learning progresses. The value range
of sigmoid function that is used as an output function in each hidden or output
neuron is from -0.5 to 0.5. To transform between Q-value output [-0.5, 0.5] in
the RNN and actual Q-value [0.0, 1.0], the value is shifted by -0.5 or 0.5. The
other parameter settings are shown in Table 1.

Table 1. Parameter setting

initial position of the agent (x,y) (2.0~3.0, 2.0~3.0)
radius of the switch 0.2
number of layers 5
number of neurons in each layer 11(input)-80-40-20-4(output)
constant input for bias 0.1
reward r at the third room 0.9
punishment for “push” at the outside of the switch -0.1
discount factor 0.9
thr range of exploration vector rnd (rnd;,rnd,) -0.5~0.5 - -0.2~0.2
traced back time in BPTT 30
initial connection weight
input - hiddenl, hiddenl - hidden2 -0.1~0.1, -0.2~0.2
hidden2 - hidden3, hidden3 - output -0.5~0.5, 0.0
self-feedback, other-feedback 4.0, 0.0
learning rate
for feedback connections 0.0125
for other connections 0.5
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4 Learning Result

The learning finished after 760, 675 episodes. After learning, the agent can reach
the third room from any grid point with the interval of 0.01 in the central room
for any pattern of the room appearance. However, depending on the random
sequence used in learning, a few failures occured.

Fig. 3~Fig. 6 show two sample agent behaviors after learning. In (a), the
initial position is (2.1, 2.9), and the direction of the opened door is left at first
and then upward in order, and in (b), the initial position is (2.9, 2.1), and the
direction of the opened door is downward at first and then right in order. Fig.
3~Fig. 6 show the agent trajectory, the Q-value outputs, and the Actor outputs,
a part of the outputs in the top hidden layer at each step respectively.

As shown in Fig. 3, the agent moved on switches and pushed them and arrived
at the third room. In both cases, when the agent pushed the second switch, the
agent cannot know which door is newly opened only from the present sensor
signals. However, from the fact that the agent arrived at the third room without
being at a loss, it is considered that the agent could act based on memory. In
Fig. 4, as the number of steps increased, the larger of the two Q-values at each
step increased monotonically, and is close to the ideal curve. When the agent
was located on a switch at the 2nd or 7th step, the value for the “push” action
increased even though no explicit signal is given to identify that the agent is
on a switch. This means that the agent could recognize it from the continuous
inputs. In Fig. 5, it is known that when a new room appears, the Actor changes
so as that the movement of the agent is directed to the new room.

Fig. 6 shows the output of characteristic neurons in the top hidden layer. A
hidden neuron 1 changed its output only when the agent pushed the first switch.
The hidden neuron 2 changed its output only when the agent pushed the second
switch. The interesting point is that the output change of the hidden neuron at
the door opening is very large and not depending on the direction in which the
new room appears.

In a past study[6], it was reported that a discrete representation emerged
through the learning in the task that an agent passed on a switch and arrived
at a goal. In this case, a binary input indicating whether the agent is on the
switch or not is given, so it is rather easy to form discrete state representation
by holding the binary input in the RNN. However, in this task, although one of
the distance inputs changes discretely when the agent opens the door, it changes
only from 0.22 to 0.01 in the range from 0.0 to 1.0. Therefore, it is difficult
to explain the sudden change in the hidden neuron only from the input signal,
but the change should be explained from the necessity of generating Q-values or
Actor outputs.

Then, to examine which output needs such discrete and abstract representa-
tion in the hidden neurons, Q-values and Actor outputs are learned separately
using two RNNs in the learning of the same task. As the result, the discrete and
abstract state representation was formed only in the RNN for Q-values. Fig. 7
and 8 show the Q-value outputs and a part of the output in the top hidden layer
at each step respectively in the RNN for Q-values. Note that, the agent pushed
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Fig. 3. Two sample trajectories of the agent after learning.
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Fig. 6. Discrete change of the outputs in two neurons in the top hidden layer.
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the second switch at one step earlier than the previous case. The hidden neurons
that change suddenly at the door opening not depending on its direction have
the largest connection weight with the Q-value output for the “move” action. It
was reported that if the two training signal patterns are similar, the represen-
tation in the hidden layer that is close to the output layer is likely to be closer
to each other through learning even though the input patterns are not close[7].
As shown in Fig. 4 (a) and (b), since the Q-values always change in the same
way not depending on which door is opened, it can be explained that similar
representation not depending on the door opening direction emerges. The reason
of emergence of sudden change in the hidden neurons is suggested as follows. In
the hidden neurons, the recognition of whether the agent is on a switch or not
emerged from the necessity of raising the Q-value for the “push” action and its
representation should be discrete to realize the sudden change in the Q-values
at the step 2 or 7. The recognition result is held in another hidden neuron to
represent the difference in Q-values between before and after the door opening.
However, it has not been examined yet, and that is left as a future work.
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Fig. 7. Change of the Q-values in one episode.
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Fig. 8. Discrete change of the outputs in two neurons in the top hidden layer.

5 Discussion & Conclusion

In this paper, it was shown that discrete and abstract state representation
emerged through Actor-Q reinforcement learning using a recurrent neural net-
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work in doors-and-rooms environment. It is interesting that a different input
signal changed depending on the opened door, but the representations in the
top hidden neurons were almost the same. It is suggested from the learning us-
ing two recurrent neural networks that such representation emerge to generate
Q-values that is also not depending on the door opening direction.

Although the discrete and abstract representation emerged, emergence of
“concept” still seems to be out of reach. In order to form the “concept”, it
is required to extract necessary information and to recognize its state flexibly
from more kinds of sensor signals that includes trivial information by consid-
ering many things simultaneously taking advantage of parallel processing. The
large gap between the sensor signals and the state representation requires more
intelligence, and that permit us to call a “concept”, the authors hope. From this
viewpoint, a visual sensor with many visual cells will be used in a future work.

Anyway, the authors hope that the work in this paper shows the usefulness
of the combination of reinforcement learning and a recurrent neural network
towards the emergence of “concept”, and becomes a foothold for it.
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