
Reinforcement Learning of a Memory Task
using an Echo State Network
with Multi-Layer Readout

Toshitaka Matsuki and Katsunari Shibata

Oita University, 700 Dannoharu, Oita, Japan
{matsuki,shibata}@oita-u.ac.jp

Abstract. Training a neural network (NN) through reinforcement learn-
ing (RL) has been focused on recently, and a recurrent NN (RNN) is
used in learning tasks that require memory. Meanwhile, to cover the
shortcomings in learning an RNN, the reservoir network (RN) has been
often employed mainly in supervised learning. The RN is a special RNN
and has attracted much attention owing to its rich dynamic represen-
tations. An approach involving the use of a multi-layer readout (MLR),
which comprises a multi-layer NN, was studied for acquiring complex
representations using the RN. This study demonstrates that an RN with
MLR can learn a “memory task” through RL with back propagation.
In addition, non-linear representations required to clear the task are not
observed in the RN but are constructed by learning in the MLR. The
results suggest that the MLR can make up for the limited computational
ability in an RN.

Keywords: Echo State Network, Reservoir Network, Reservoir Com-
puting, Reinforcement Learning

1 Introduction

Deep learning(DL) has surpassed existing approaches in various fields. It sug-
gests that a successfully trained large scale neural network (NN) that is used
as a massive parallel processing system is more flexible and powerful than the
systems that are carefully designed by engineers. In recent years, end-to-end re-
inforcement learning (RL), wherein the entire process from sensors to motors is
composed of one NN without modularization and trained through RL, has been
a subject of focus[1]. For quite some time, our group has suggested that the end-
to-end RL approach is critical for developing a system with higher functions and
has demonstrated the emergence of various functions[2]. Recently, deep mind
succeeded in training an NN to play Atari video games using the end-to-end
RL approach[3]. A feature of this approach is that the system autonomously
acquires purposive and general internal representations or functions only from
rewards and punishments without any prior knowledge about tasks.

When the system learns proper behaviors with time, it has to handle time
series data and acquire necessary internal dynamics. A recurrent structure is



2 Toshitaka Matsuki and Katsunari Shibata

required for the system to learn such functions using an NN. We demonstrated
that a recurrent NN (RNN) trained by back propagation through time (BPTT)
using autonomously produced training signals based on RL can acquire a func-
tion of “memory” or “prediction”[4][5]. However, it is difficult for a regular RNN
to acquire complex dynamics such as multiple transitions among states through
learning.

BPTT is generally used to train an RNN, but factors such as slow conver-
gence, instability, and computational complexity can cause problems. A reservoir
network (RN) such as a liquid state machine, proposed by Jaeger[6], or an echo
state network (ESN), proposed by Maass[7], is often used to overcome such is-
sues. The RN uses an RNN called “reservoir,” which comprises many neurons
that are sparsely connected with each other in a randomly chosen fixed weight.
The reservoir captures the history of inputs, receives its outputs as feedback, and
forms dynamics including rich information. The outputs of RN are generated as
the linear combinations of the activations of reservoir neurons by readout units,
and the network is trained by updating only the readout weights from the reser-
voir neurons to generate the desired values. Therefore, it is easy for the RN to
learn to process the time series data and generate complex time series patterns.
We believe that the RN can be a key to solving the problems associated with
acquiring complex dynamics through learning. In this study, an ESN, which is a
kind of RN having rate model neurons, is used. The ESN has been used in various
studies, including motor control[8] and dynamic pattern generation[9][10].

To generate outputs that cannot be expressed as linear combinations of dy-
namic signals in reservoir and inputs from the environment, an approach us-
ing more expressive multi-layer readout (MLR), which uses a multi-layer NN
(MLNN) trained by back propagation (BP) instead of regular readout units
for output generation was studied[11]. Bush and Anderson showed that ESN
with MLR can approximate the Q-function in a partially observable environ-
ment through Q-learning[12]; Babinec and Posṕıchal showed that the accuracy
of time series forecasting was improved with this approach[13]. These studies
were conducted more than a decade ago. However, we believe that such an ar-
chitecture will be vital in the future as more complex internal dynamics and
computation are required to follow the trend of the increasing importance of
end-to-end RL.

In this study, we focus on learning to memorize necessary information from
the past and utilize this information to generate appropriate behaviors using an
ESN with MLR. We also demonstrate that such functions can be learned by
simple BP that does not involve trace back to the past as in BPTT.

2 Method

2.1 Network

The network architectures used in this study are shown in Fig. 1. Instead of
single layer readout units, as shown in Fig. 1(a), an RN comprises a multi layer



Reinforcement Learning using an ESN with Multi-Layer Readout 3

Fig. 1. Network architectures of (a) a regular reservoir network(RN) and (b) an RN
with multi-layer readout(MLR).

neural network (MLNN) such as multi-layer readout (MLR), as shown in Fig.
1(b), to generate outputs. The inputs from the environment are provided to the
reservoir and readout units or MLNN, and the outputs of the reservoir neurons
are provided to the MLNN. The reservoir’s capacity for storing large volumes of
information and the MLNN’s ability of flexibly extracting the necessary infor-
mation from large volumes of information and generating appropriate outputs
are combined. Therefore, it is expected that tracing back to the past with BPTT
is no longer required, and memory functions can be acquired only with BP.

The number of reservoir neurons is Nx = 1000. The reservoir neurons are
dynamical model neurons and are recurrently connected with the connection
probability p = 0.1. The internal state vector of reservoir neurons at time t,
x(t) ∈ RNx is given as

xt =
(
1− a

)
xt−1 + a

(
λWrecrt−1 +Winut +Wfbzt−1

)
, (1)

where a = 0.1 is a constant value called leaking rate that determines the time
scale of reservoir dynamics. Wrec ∈ RNx×Nx is the recurrent connection weight
matrix of the reservoir, and each component is set to a value that is randomly
generated from a Gaussian distribution with zero mean and variance 1/pNx. λ =
1.2 is a scale of recurrent weights of the reservoir. Larger λmakes the dynamics of
the reservoir neurons more chaotic. rt is the output vector of reservoir neurons.
Win ∈ RNx×Ni is the weight matrix from the input to the reservoir neurons.



4 Toshitaka Matsuki and Katsunari Shibata

Wfb ∈ RNx×Nf is the weight matrix from the MLR or readout units to the
reservoir neurons, and zt is the feedback vector. Each component of Win and
Wfb is set to a uniformly random number between −1 and 1. The activation
function of every neuron in the reservoir is the tanh function.

The MLR is a four-layer NN with static neurons in the order of 100, 40, 10
and 3 from the bottom layer; the activation function of each neuron is the tanh
function. Each neuron in the bottom layer of MLR receives outputs from all
the reservoir neurons. The outputs of Nf = 10 neurons in the hidden layer, one
lower than the output layer, are fed back to every neuron of the reservoir as
feedback vector zt ∈ RNf . Ni = 7 inputs are derived from the environment; all
these inputs are given to each neuron in the reservoir and the bottom layer of
MLR. Each initial weight of MLR is set to a randomly generated value from
a Gaussian distribution with zero mean and variance 0.01/n, where n is the
number of inputs in each layer. The MLP is trained by BP and the stochastic
gradient descent algorithm with a learning rate of 0.01.

The network outputs are critic Vt and actor vector At. The sum of At and
the exploration component vector rndt is used as the motion signal of the agent
at time t. Each component of rndt is set to a uniformly random value between
−1 and 1.

2.2 Learning

In this network, only the weights of the paths indicated by the red arrows in
Fig. 1 are trained using the BP based actor-critic algorithm. The training signal
for critic at time t− 1 is given as

V train
t−1 = V (ut−1) + r̂t−1 = rt + γV (ut), (2)

where r̂t−1 is TD-error at time t− 1, which is given as

r̂t−1 = rt + γV (ut)− V (ut−1), (3)

where rt is a reward received by the agent at time t and γ = 0.99 is the discount
rate. The training signal for actor at time t− 1 is given as

Atrain
t−1 = A(ut−1) + r̂t−1rndt−1. (4)

The weights in reservoir Wrec,Win and Wfb are not trained.

3 Experiment

A memory task was employed to examine the capability of an RN with MLR.
Comparing a regular RN and an RN with MLR, we examined the practicality
of the parallel and flexible processing capability of MLNN in the memory task.

The outline of the task is shown in Fig. 2. An agent is placed on a 15.0 ×
15.0 plane space. At every step, the agent moves according to the two actor



Reinforcement Learning using an ESN with Multi-Layer Readout 5

Fig. 2. Outline of the memory task. An agent must first enter the switch area, and
then go to the goal area.

outputs each of which determines the moving distance in either x or y directions
respectively. The purpose of this agent is to learn the actions needed to first
enter the switch area, and then go to the goal. The radius of the goal or switch
area is 1.5.

From the environment, an agent receives Ni = 7 signals as an input vector

ut = [d′g, sinθg, cosθg, d
′
s, sinθs, cosθs, signal], (5)

where d′g, d′s are distances to the goal and switch areas, respectively, and are
normalized into the interval [−1, 1]. θg and θs are the angles between the x-axis
and the goal or switch direction from the agent. Only when the agent is in the
switch area, a signal is given as

signal =

{
0 ds > Rs

10 ds ≤ Rs,
(6)

where Rs is the radius of the switch area. In each trial, the agent, goal and
switch are randomly located in the field, and their areas do not overlap with
each other. A punishment rt = −0.1 is set for an agent when it contacts the
wall, and a punishment rt = −0.5 is set when the agent enters the goal area
before the switch area. A reward rt = 0.8 is set when it enters the goal area after
entering the switch area. One trial is terminated after the agent acts 200 steps
or enters the goal area. After 50,000 trials, the system stops learning.

4 Result

After 50,000 learning trials, the agent behaviors were observed in two cases
wherein the sign of each actor output should be changed before and after entering
the switch area. The trajectories of the agent in the test trial are shown in Fig.3.

For comparison, the results in the case of RN with MLR are shown in Fig.
3(a) and 3(b) and those in the case of regular RN are shown in Fig. 3(c) and



6 Toshitaka Matsuki and Katsunari Shibata

(a) RN with MLR(case 1) (b) RN with MLR(case 2)

(c) regular RN(case 1) (d) regular RN(case 2)

Fig. 3. Comparison of agent trajectory for two cases between RN with MLR and regular
RN.

3(d). As shown in Fig. 3(a) and 3(b), the agent with MLR first entered the
switch area after which it entered the goal area. The result shows that this
network succeeded in learning a memory task through RL without tracing back
to the past as in BPTT. In addition, the network acquired functions to memorize
necessary information and generate the desired action signal only with BP. In
contrast, as shown in Fig. 3(c) and 3(d), the agent with a regular RN failed to
learn the desired behavior. Without entering the switch area, the agent entered
the goal area either after wandering in the field (case 1) or remained continually
struck to the wall (case 2).

To observe the activation of the reservoir neurons, the switch was fixed at
the center of the field, and the goal or the agent was located at one of the four
points: (3, 3), (3, 12), (12, 3) and (12, 12); the test trial was then implemented.
Various activations were found among the reservoir neurons, but in most cases,
it was difficult to find a clear regularity in the activation. In Fig. 4, the network
outputs and two characteristic activations of reservoir neurons, in certain cases,
are shown with the agent trajectory. In all the cases, the activation of the neuron
(1) in Fig. 4 decreases after switching in a similar way. Such neurons remember



Reinforcement Learning using an ESN with Multi-Layer Readout 7

(a) (b)

(c) (d)

Fig. 4. Outputs of the network and two characteristic reservoir neurons during one
trial for 4 cases of goal and initial agent locations. V is critic, and Ax and Ay are the
actor outputs for x- and y-axis, respectively.



8 Toshitaka Matsuki and Katsunari Shibata

that the agent has already entered the switch area and contribute to reflect the
memory to the outputs of actor. Some other neurons that seems to contribute
to the memory function were found.

A non-linear function of present sensor signals and the memorized informa-
tion that represents whether the agent has already entered the switch area are
required to generate appropriate outputs. In the case of Fig. 4(b), by entering
the switch area, the y-motion should be changed from “go up” to “go down,”
whereas in the case of Fig.4(c), it should be changed from “go down” to “go
up”. Then, to determine whether such outputs are generated in the reservoir,
we attempted to find the reservoir neurons with the same sign as the output
as that of the actor output for y-axis motion before and after the agent was
inside the switch area. The neuron (2) in Fig. 4 is the only one found among
the total of 1,000 reservoir neurons. However, the activation pattern of neuron
(2), shown in Fig. 4, seems to lag behind the actor output for the y-axis. Then,
the feedback connection weight matrix Wfb is set to zero and the same test
was performed to eliminate the influences from the MLR to the reservoir. In
that case, the activation which has a similar feature to the neuron(2) was not
observed in the reservoir but the agent could clear the task. This suggests that
the activation in Fig. 4(2) appeared under the influences of the MLR through
the feedback connections. Considering that the regular RN could not learn the
memory task, the non-linear function of memorized information in the reservoir
and present sensor signals required to clear the task are not generated in the
reservoir but are constructed through learning in the MLR. In other words, the
learning of MLNN in MLR is necessary to non-linearly integrate the outputs of
reservoir and sensor signals, which enables the switching of actor outputs based
on memory.

5 Conclusion

This study demonstrated that an RN with MLR, which generates outputs with
an MLNN instead of readout units, can learn a memory task using RL with
simple BP without using BPTT. Various activations were observed among the
neurons in the reservoir. There were neurons whose activation decreases after
switching in a similar way in all cases, and it is considered that these neurons
greatly contribute to the function of memory. It was confirmed that non-linear
representations, such as changes in actor outputs before and after reaching the
switch area, were not observed in the reservoir dynamics; however, owing to the
expressive MLNN, the MLR learns to construct the non-linear representations
and successfully generate appropriate actor outputs. Our future study includes
applying this frame to more complex tasks; analyzing the length of time the
network can continue to store necessary information; analyzing how the feed-
back from a hidden layer of MLR to the reservoir influences reservoir dynamics;
developing a method to train input weights of the reservoir to extract neces-
sary information from inputs; and verifying whether our already proposed RL



Reinforcement Learning using an ESN with Multi-Layer Readout 9

method [14][15], in which chaotic internal dynamics in a NN are used as explo-
ration components, is applicable.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 15K00360.

References

1. Y.LeCun, Y.Bengio and G.Hinton: Deep learning. Nature 521, 436−444 (2015)
2. K.Shibata: Functions that Emerge through End-to-end Reinforcement Learning.:

arXiv preprint arXiv:1703.02239 (2017)
3. V.Mnih, K.Kavukcuoglu, D.Silver, A.Graves, I.Antonoglou, D.Wierstra, and

M.Riedmiller: Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.(2013)

4. K.Shibata and H.Utsunomiya: Discovery of pattern meaning from delayed rewards
by reinforcement learning with a recurrent neural network, Proc. of IJCNN., pp.
1445−1452(2011)

5. K.Shibata and K.Goto: Emergence of flexible prediction-based discrete decision
making and continuous motion generation through Actor-Q-Learning, Proc. of
ICDL-Epirob. 2013, ID 15 (2013)

6. H.Jaeger: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report 148.34 (2001): 13.

7. W.Maass, T.Natschlger, and H.Markram: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
computation 14.11, 2531−2560 (2002)

8. M.Salmen, and P.G.Ploger: Echo state networks used for motor control. Robotics
and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on. IEEE (2005)

9. D.Sussillo, L.F.Abbott: Generating coherent patterns of activity from chaotic neural
networks. Neuron Article, Vol.63, No.4, pp.544-557(2009)

10. G.M.Hoerzer, R.Legenstein and W.Maass: Emergence of complex computational
structures from chaotic neural networks through Reward-Modulated Hebbian Learn-
ing. Cerebral Cortex, Vol.24 No.3, pp.677−690 (2014)

11. M.Lukusevic̆ius and H.Jaeger: Reservoir computing approaches to recurrent neural
network training.: Computer Science Review 3.3, pp.127−149. (2009)

12. K.Bush, and C.Anderson: Modeling reward functions for incomplete state repre-
sentations via echo state networks.: Neural Networks, 2005. IJCNN’05. Proceedings.
2005 IEEE International Joint Conference on. Vol. 5. IEEE (2005)

13. S̆.Babinec, and J.Pospchal: Merging echo state and feedforward neural networks
for time series forecasting.: Artificial Neural NetworksICANN 2006, pp.367−375.
(2006)

14. Y.Goto and K.Shibata: Emergence of Higher Exploration in Reinforcement Learn-
ing Using a Chaotic Neural Network, Proc. of Int’l Conf. on Neural Information
Processing (ICONIP)2016, LNCS 9947, pp. 40−48 (2016)

15. T.Matsuki and K.Shibata: Reward-Based Learning of a Memory-Required Task
Based on the Internal Dynamics of a Chaotic Neural Network, Proc. of Int’l Conf.
on Neural Information Processing (ICONIP)2016, LNCS 9947, pp. 376-383 (2016)


