
Learning time constant of
continuous-time neurons with gradient descent

Toshitaka Matsuki and Katsunari Shibata

Oita University, 700 Dannoharu, Oita, Japan
{matsuki,shibata}@oita-u.ac.jp

Abstract. In this paper, we propose a learning method to update the
time constant in each continuous-time neuron with gradient descent to
generate desired output patterns. Selecting appropriate time constant for
each neuron in a continuous-time recurrent neural network is difficult.
Hence, the development of adaptive method of the time constant is de-
sired. However, direct update of time constants with gradient descent is
significantly unstable. Therefore, to avoid the instability, we propose a
learning method applying gradient descent to the logarithm of the time
constant. We carried out an oscillator reproducing task in which a learn-
ing network is trained to generate the same oscillatory outputs from the
teacher network. The training result shows that our proposed method
can successfully update the time constants and suggests that leaning of
time constants expands the freedom in learning and improve the learning
performance.

Keywords: Neural Network, Continuous Time Neuron, Time Constant,
Continuous Time Recurrent Neural Network

1 Introduction

The remarkable performance of the deep learning (DL) has attracted much at-
tention in recent years[1]. In the DL, an entire computational function from
input to output is acquired in a large-scale neural network (NN) through modi-
fication of connection weights, and successfully trained NN can be more flexible
and powerful than carefully designed systems. The world we live has not only the
extent of space but also the flow of time, therefore, in the future development of
the NN for processing sensor input sequences, memorizing or recalling informa-
tion, generating consistent motor outputs, making decision or thinking, temporal
processing will be considerably significant. A recurrent neural network (RNN),
in which neurons are recurrently connected and information is maintained over
time, is used to learn time series processing. For generating continuous output
pattern or producing complex dynamics in the RNN, a continuous-time recurrent
neural network (CTRNN) which consists of continuous-time neurons is used [2].
The internal state of the continuous-time neuron is modeled by the linear first-
order differential equation and its time scale is determined by its time constant.
With a small time constant, the internal state of a neuron strongly decays and



2 Toshitaka Matsuki and Katsunari Shibata

takes the current inputs. Conversely, with a large time constant, internal state of
a neuron changes sluggishly holding its previous internal state and taking little
current inputs.

A practical task requires an artificial agent to think and/or act properly in
various time scales. For example, we suppose that an artificial agent pours juice
in a bottle into a glass. In a short time scale, the agent has to change its motor
commands finely and quickly depending on the pouring situation, while in a long
time scale, it has to transfer its mode among multiple states such as taking the
bottle, uncapping, pouring the juice into a glass and handing someone the glass
of juice.

Achieving such multiple time scale behavior is difficult for RNN consisting of
static neurons because its time scale is equivalent to the step size and so all the
neurons have the same time scale. To introduce various time scales into RNN,
the continuous-time neurons having different time constant is essential. Tani
et al. showed that functional hierarchy can emerge in the CTRNN which has
multiple time scales with different and fixed time constants [3][4]. Quite some
time ago, M.C.Mozer showed the RNN which has multi-scale temporal structure
can effectively learn structures in temporally expanded sequences, and referred
to potential and difficulty of direct learning of time constant [5]. We expect that
the modification of time constant can assist a network to learn various time
scale tasks and the functional hierarchy according to the time scale to emerge
among the neurons, and also expansion of the degree of freedom into the time
axis increases the leaning performance significantly.

Thus, the development of adaptive method of the time constant is desired.
However, direct update of time constants with gradient descent is unstable, be-
cause when the time constant is small, the output of the neuron is significantly
sensitive, therefore the gradient descent makes the update of the time constant
large, and vice versa. Hence the time constant often becomes negative.

In this paper, to avoid the difficulty, we propose a learning method applying
gradient descent to the logarithm of the time constant and demonstrate the
network can successfully modify the time constant of its neurons to generate
desired oscillatory patterns with this method.

2 Method

2.1 Network

In a CTRNN, internal state of a neuron is updated continually by the following
differential equation

τj u̇j,t = −uj,t +

N∑
i=1

wj,ixi,t (1)

where τj , uj,t, xj,t are the time constant, the internal state and the output of
the j-th neuron at time t respectively, wj,i is the connection weight from the
i-th neuron to the j-th neuron. In the computer simulation in this research, we



Learning time constant of continuous-time neurons with gradient descent 3

compute the network behavior with finite difference approximation, and actual
update is computed according to

uj,t = (1− ∆t

τj
)uj,t−∆t +

∆t

τj

N∑
i=1

wj,ixi,t−∆t (2)

where ∆t = 0.01 is the simulation time step. In Eq. (2), the internal state
of each neuron is determined not only by the current inputs but also by the
decayed internal state of itself. The output of the neuron is calculated according
to tangent hyperbolic function as

xj,t = tanh(uj,t) =
euj,t − e−uj,t

euj,t + e−uj,t
. (3)

The time constant τj decides the time scale of the network dynamics. When
the τj of a neuron is large, its internal state changes slowly because ∆t

τj
is small

and the previous state of the neuron strongly affect the current internal state.
Whereas, when the τj of a neuron is small, its internal state changes quickly
because ∆t

τj
is large and the current inputs strongly affect the current internal

state. In this research, we propose the training method for the time constant
value of each neuron in CTRNN.

2.2 Training

We use gradient descent to modify not only the connection weights w but also
the time constants τ of the network neurons. Here, we assume an easy case that
every neuron is given its training signal directly. We define the error function at
time t for the neurons as

Et =

N∑
j=1

1

2
(dj,t − xj,t)

2 (4)

where dj,t and xj,t are the desired output and actual output of j-th neuron at
time t respectively.

Then, we can adjust the connection weights using the gradient descent by

∆wji = −ηw
∂Et

∂wji
= −ηw

∂Et

∂xj,t

dxj,t

duj,t

∂uj,t

∂wji
(5)

where ηw is a small positive constant called learning rate determining the step
size in the gradient descent search. This equation is defined with negative sign
because the error should be decreased. The Eq. (5) can be expanded as

∆wji = ηw(dj,t − xj,t)(1− x2
j,t)

∆t

τj
xi,t−∆t (6)



4 Toshitaka Matsuki and Katsunari Shibata

Now, we consider that the time constant of a neuron is trained with the same
way as the following equation.

∆τj = −ηT
∂Et

∂τj
= −ηT

∂Et

∂xj,t

dxj,t

duj,t

∂uj,t

∂τj
. (7)

However, actually, the time constant cannot be trained stably with this equation.
We explain the reason why the training of time constant is unstable. The change
of internal state uj at time t is

∆uj,t = uj,t − uj,t−∆t =
∆t

τj

(
−uj,t−∆t +

N∑
i=1

wj,ixi,t−∆t

)
. (8)

This equation indicates that for small τj , uj is sensitive to small variations of

τj while insensitive for large τj because τj is in the denominator. Now,
∂uj,t

∂τj
is

calculated as

∂uj,t

∂τj
=

∂

∂τj

{
(1− ∆t

τj
)uj,t−∆t +

∆t

τj

N∑
i=1

wj,ixi,t−∆t

}
=

∆t

τ2j
uj,t−∆t + (1− ∆t

τj
)
∂uj,t−∆t

∂τj

−∆t

τ2j

N∑
i=1

wj,ixi,t−∆t +
∆t

τj

N∑
i=1

wj,i
∂xi,t−∆t

∂τj
.

Ignoring the fourth term, which indicates the indirect influence of τj through
other neurons,

∂uj,t

∂τj
= −∆t

τ2j
(−uj,t−∆t +

N∑
i=1

wj,ixi,t−∆t) + (1− ∆t

τj
)
∂uj,t−∆t

∂τj
(9)

= − 1

τj
(uj,t − uj,t−∆t) + (1− ∆t

τj
)
∂uj,t−∆t

∂τj
. (10)

This equation can be calculated through recursive computation by replacing
∂uj,t

∂τj
with aj,t as

aj,t = − 1

τj
(uj,t − uj,t−∆t) + (1− ∆t

τj
)aj,t−∆t. (11)

Eq. (7) and (9) let us find that ∆τj is the value of the order of τ−2
j . Therefore,

when τj is very small, ∆τj diverges and τj often becomes negative. While once
τj become very large, ∆τj is too small for τj to be back to a small value.

Hence, we need a technique to regulate this sensitivity depending on τj and
keep it positive. To meet these requirements, we introduce a logarithm in the
time constant

Tj = loge τj .



Learning time constant of continuous-time neurons with gradient descent 5

By updating τj through Tj , τj can be prevented from being negative or stuck a

large value. For small τj ,
∂uj

∂Tj
and ∆τj become smaller, and for large τj ,

∂uj

∂Tj
and

∆τj become larger as

∂uj

∂Tj
= τj

∂uj

∂τj
∆τj = τj∆Tj

Fig.1 shows the mapping from Tj to τj . As shown in this figure, when Tj is a
large negative value, ∆τj is small and τj never becomes negative but converges
to zero, conversely, when Tj is a large positive value, ∆τj is large.

Fig. 1. The mapping from Tj to τj .

Based on the gradient descent, Tj is updated by

∆Tj = −ηT
∂Et

∂Tj
= −ηT

∂Et

∂xj,t

dxj,t

duj,t

∂uj,t

∂τj

dτj
dTj

. (12)

For training τj , we use the relation between dTj and dτj as

dτj = τjdTj (13)

and we obtain updating equation as

∆τj = −ηT τ
2
j

∂Et

∂xj,t

dxj,t

duj,t

∂uj,t

∂τj
. (14)

Now, the equation (14) can be expanded as

∆τj = −ηττ
2
j (dj,t − xj,t)(1− x2

j,t)
∂uj,t

∂τj
. (15)

The τ2j in equation (15) cancels the effect of 1
τ2
j
in equation (9), and consequently,

the exploding or vanishing of ∆τj can be avoided.
In addition, there is one more problem for learning pattern generation us-

ing recurrent connections of an RNN. If the output includes a lot of errors, the



6 Toshitaka Matsuki and Katsunari Shibata

Fig. 2. The network structure.

neurons learn based on the erroneous outputs as feedback inputs for the next
time step, and leaning does not progress appropriately. Same problem in learning
dynamic pattern generation is treated in some literatures about reservoir com-
puting. Jeager et al. employed teacher forcing that use teacher signal as output
feedback during training [6]. Sussillo and L.F.Abbott proposed FORCE leaning
that modifies weights so that error in the network output fed back to reservoir is
kept small every time step during training [7]. These works avoid the problem by
keeping the feedback error zero or small. In this work, to keep the feedback error
small during learning, we modify the internal state of the neurons according to
the teacher signal at every time step during training with

∆uj,t = ηu(dj,t − xj,t)
duj,t

dxj,t
(16)

where ηu is modification rate, which is a small positive constant that adjusts the
modification.

3 Simulation

3.1 Task

To test the proposed method, we applied it to an oscillator learning task as
shown in Fig. 2. We employed two CTRNNs: one of them is a “teacher network”
and the other is a “learning network”, and each of them has N = 3 neurons. The
teacher network generates oscillatory outputs and the learning network learned
using them as training signals. We observed how time constants or connection
weights of the learning network were changing during training and whether the
learning network can successfully learn. To make the teacher network generate
self-sustained oscillatory activities as training signal, we set specific values on
its connection weights. There are three kinds of connection weights, we set the
weights in anti-clockwise pathways to wp, in clockwise pathways to wn and self-
feedback pathways to ws. The initial connection weight wp, ws is set a positive



Learning time constant of continuous-time neurons with gradient descent 7

value and wn is set a negative value. Moreover, the initial internal state of
one neuron was set to 1, and others were set to 0. The excitation of a neuron
shifts anticlockwise and self-sustained oscillations appear in the teacher network.
The learning network modifies its time constant and/or connection weights to
approximate the outputs to the training signals.

We examined in three task settings. First, only the time constants of learning
network was set to different values from teacher network and trained to generate
desired outputs (Task 1). Second, the connection weights and time constants
of learning network were set to different values from teacher network and only
connection weights were trained (Task 2). Third, the initial parameters of the
learning network were same as Task 2 and all the parameters were trained (Task
3). The setting of the tasks are summarized in Table 1. The learning rates and
modification rate were set as shown in Table 2 and the initial parameters of the
two networks were set as shown in Table 3. For the purpose of preventing time
constants from becoming gratuitously large value or less than simulation time
step, the range of time constants is limited from 0.01 to 100.

Table 1. The outline of the simulation tasks

time constant connection weight
initial value training initial value training

Task 1 different trained same as fixed
teacher network

Task 2 different fixed different trained

Task 3 different trained different trained

Table 2. The learning rates and modification rate

ηw ηT ηu
0.1 0.01 0.01

Table 3. Initial parameters of the networks

τ1 τ2 τ3
target

2.0 5.0 8.0
network

learning
0.1 0.1 0.1

network

task1 task2 task3

target ws 2.0
network wp 3.0

wn -4.0

learning ws 2.0 0.0 0.0
network wp 3.0 0.0 0.0

wn -4.0 0.0 0.0



8 Toshitaka Matsuki and Katsunari Shibata

3.2 Results

The learning network was trained with the training signals from the teacher
network in training phase and tested without updating its connection weights
or time constants in test phase. The number of learning steps is 10000 for Task
1 and 50000 for Task 2, 3. The number of test steps is 5000 for each task. Fig.
3, 4 and 5 show the training results.

Task 1: As shown in Fig. 3, each time constant in the learning network con-
verged to the corresponding value of the teacher network, and the learning
network successfully learned to generate the same oscillatory activities as the
training signals. This result indicates the time constant of each continuous-time
neuron can be trained perfectly on the basis of training signal to generate de-
sired output pattern when the connection weights in each network are the same
values.

(a) Outputs (test phase)

(b) Time constants (training phase)

Fig. 3. The results in Task 1. Figure (a) shows the outputs of the learning network
(red line) and the desired output generated by teacher network (dotted line) during
test phase. Figure (b) shows the time constants of the learning network during training.



Learning time constant of continuous-time neurons with gradient descent 9

Task 2: As shown in Fig. 4, the learning network failed to learn. Although
the learning network modified its connection weights to generate desired pattern
with the difference of time constants from the teacher network, the network did
not succeed to generate desired output.

(a) Outputs (test phase)

(b) Weights (training phase)

Fig. 4. The results in Task 2. Figure (a) shows the outputs of the learning network
(red line) and the desired output generated by teacher network (dotted line) during
test phase. Figure (b) shows the connection weights of the learning network during
training phase.

Task 3: As shown in Fig. 5, although the time constant and connection weights
of the learning network converge to different values from the teacher network,
the learning network successfully learned. This result suggests that there are
multiple solutions to generate the desired output. Considering that the network
failed to learn with the same initial condition in the Task 2, these results show
the limitation of weight modification in potential of learning pattern generation
without optimizing time scale and the advantage of the time constant modifi-



10 Toshitaka Matsuki and Katsunari Shibata

cation in learning. In this task, our proposed method expands learning into the
time axis and greatly increases the learning performance.

(a) Outputs (test phase)

(b) Time constants (training phase)

(c) Weights (training phase)

Fig. 5. The results in Task 3. Figure (a) shows the outputs of the learning network
(red line) and the desired output generated by teacher network (dotted line) during
test phase. Figure (b), (c) show the time constants and the connection weights of the
learning network during training phase respectively.



Learning time constant of continuous-time neurons with gradient descent 11

4 Conclusion

This paper proposed a learning method to update the time constant in dynamical
neurons when a teacher signal is provided to each neuron. It is demonstrated that
in a three-neuron oscillator reproducing task, each neuron in the leaning network
can modify the time constant and the network can reproduce the output pattens
generated by the teacher network. When we initialized the leaning network with
the same connection weights as teacher and fixed, the time constant of each
neuron in the learning network converges to the same value as the corresponding
one in the teacher network. When the connection weights are modified as well
as the time constants, the output can be reproduced, although the weights and
time constants are not the same as the teacher network. However, when the time
constants are set to different values from the teacher network and fixed, learning
failed. This suggests the possibility that leaning of time constants expands the
degree of freedom and improve the learning performance drastically.

Our future work includes expanding our proposed method with backprop-
agation through time for training multi layered CTRNN and challenging more
difficult tasks than this study in which the network is required generating com-
plex output patterns or processing time-series inputs to behave properly.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP15K00360,
JP18H00543.

References

1. Y.LeCun, Y.Bengio, G.Hinton : Deep learning. Nature 521, 436-444 (2015)
2. K.Doya and Y.Shuji: Adaptive neural oscillator using continuous-time back-

propagation learning. Neural Networks 2.5, 375-385 (1989)
3. Y.Yamashita and J.Tani.: Emergence of Functional Hierarchy in a Multiple

Timescale Neural Network Model: A Humanoid Robot Experiment. PLoS Com-
putational Biology 4, Vol.11, (2008)

4. J.Namikawa, R.Nishimoto, J.Tani: A neurodynamic account of spontaneous be-
haviour. PLoS Computational Biology, Vol.7, Issue.10 (2011)

5. M.C.Mozer: Induction of Multiscale Temporal Structure: Advances in Neural Infor-
mation Processing Systems 4: 275 ‒ 82. (1992)

6. H.Jaeger: Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the” echo state network” approach. Tech- nical Report GMD Report 159,
German National Research Center for Information Technology. (2002)

7. D.Sussillo, L.F.Abbott: Generating coherent patterns of activity from chaotic neural
networks. Neuron Article, Vol.63, No.4, pp.544-557(2009)


