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Abstract. Aiming for the emergence of “thinking”, we have proposed
new reinforcement learning using a chaotic neural network. Then we have
set up a hypothesis that the internal chaotic dynamics would grow up
into “thinking” through learning. In our previous works, strong recur-
rent connection weights generate internal chaotic dynamics. On the other
hand, chaotic dynamics are often generated by introducing refractoriness
in each neuron. Refractoriness is the property that a firing neuron be-
comes insensitive for a while and observed in biological neurons. In this
paper, in the chaos-based reinforcement learning, refractoriness is intro-
duced in each neuron. It is shown that the network can learn a simple
goal-reaching task through our new chaos-based reinforcement learning.
It can learn with smaller recurrent connection weights than the case
without refractoriness. By introducing refractoriness, the agent behavior
becomes more exploratory and Lyapunov exponent becomes larger with
the same recurrent weight range.
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1 Introduction

Our group has proposed the end-to-end reinforcement learning approach in which
the entire process from input sensors to output motors that consists of a neu-
ral network is trained through reinforcement learning, and then various func-
tions emerge in it[1]. DeepMind group showed the successful learning result of
TV games in this approach[2], and that has consolidated the effectiveness of
the approach. The higher functions that we human have, for example, memory,
prediction, logical thinking need time-series processing. Our group has used a
recurrent neural network that can learn to deal with time-series data, and has
shown the emergence of memory or prediction function through reinforcement
learning[3][4]. However, what we can call logical thinking, which is a typical
higher function has not emerged yet.

We can think one after another without any input from outside, and so logical
thinking can be thought of as internal dynamics that transit among states au-
tonomously. Exploration, which is essential in reinforcement learning, is similar
to thinking in terms of dynamics with autonomous state transitions. From this
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similarity between logical thinking and exploration, we have set up a hypothesis
that exploration, which is generated as chaotic dynamics, grows up into logi-
cal thinking through learning. So, we have proposed new reinforcement learning
using a chaotic neural network (ChNN). Here, an agent explores according to
its internal chaotic dynamics without adding random noises from outside, and
can learn a simple goal-reaching task or an obstacle avoidance task([5][6]. In our
previous works, strong recurrent connection weights generate internal chaotic
dynamics in a recurrent neural network.

On the other hand, it is often the case that chaotic dynamics are generated
by introducing refractoriness in each neuron[8]. Refractoriness is the property
that neurons that have fired do not fire for a while, and is also the property
that biological neurons actually have. Chaotic itineracy, which we think very
important property for inspiration or discovery, can be observed when associative
memory is implemented. It is also shown that there is a difference in degree of
chaos between known and unknown patterns on an associative memory using a
ChNN, and after an unknown pattern is learned, association to the pattern is
formed as well as the other known patterns[7].

In this paper, we introduce refractoriness in each neuron, and apply our new
reinforcement learning to the refractoriness-originated chaotic neural network
(RChNN). We examine whether the RChNN can learn a simple goal-reaching
task. We compare the learning results between the cases of introducing refrac-
toriness and without refractoriness, and observe Lyapunov exponent for both
cases varying the range of the recurrent connection weights.

2 Reinforcement Learning (RL) using a
Refractoriness-originated Chaotic Neural Network
(RChNN)

In RL, an agent learns actions autonomously to get more a reward and less
punishment. To realize autonomous learning, exploration is necessary, and in
general, an agent explores stochastically using external random noises from out-
side. However here, an agent explores according to its internal chaotic dynamics
in its ChNN without adding external random noises. For the learning of motor-
level continuous motion signals, actor-critic is used. The actor-net, which gen-
erates actions, is made up of a ChNN, and the critic-net, which generates state
value, is made up of a non-chaotic layered NN. The chaotic neuron model with
refractoriness used in the actor net is dynamic as
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The model is originated from the Aihara model[8], but we use the expression
where the time constants are explicitly written. Each of Eq. (1)(2)(3) shows
forward, recurrent or refractoriness term that appears in Eq. (4) respectively.

uath and 0 t are the internal state and the output of the j-th hidden neuron at

(ZZTL

time t. oj;" is the i-th input signal. a indicates the actor-net h(=1) and in(= 0)

indicate the hidden and input layer respectively. w] is the connection weight
from the i-th neuron in the input layer to the j-th neuron in the hidden layer,
and wREC is the recurrent connection weight from the i-th to the j-th neuron
in the hldden layer. All the weights are decided by uniform random numbers.
Here, we use step size At = 1, time constant 7 = 1.25, scaling parameter for
time constant x = 8 referring to [8], « is the scaling parameter of refractoriness,
and g is the gain of sigmoid function. Here we use a« = 3 and g = 2. The neuron
model used in the output layer(L = 2) in the actor-net or each neuron in the
critic-net is static as
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n = a or ¢, and a represents the actor-net and c represents critic-net respectively.
TD-error 7; used for learning is computed as

Pt =1rivear +7 - Viear — Vi (8)

where 741 A; is the reward given at time t + At, 7 is a discount factor, and here
0.96 is used. Viyar = Of’fm is the critic output, and L(= 2) represents the
output layer. The training signal Ty, for the output in the critic-net at time ¢ is
computed as

Tv, = reene +7 - Vigae (9)

The critic NN is trained once by regular error backpropagation using 77y, .

In the proposed method, there is no external random number added to the

actor outputs. The weights wal (I = L(2),h(1)) in the RChNN are modified

!

using the causality trace ¢} ,

[ ] and a learning rate 7 as

l .
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where Awj; lt is the update of the weight w] The trace cé i+ 1s put on each

connectlon and takes and maintains the input through the connection according



4 Katsuki Sato, Yuki Goto, and Katsunari Shibata

to the change in its output Aoé-vt = olvyt — o
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Here, only the connection weight wjzl from inputs to hidden neurons or from

hidden neurons to output neurons are trained, and the recurrent connection

weight w;z is not trained.

3 Simulation

In this paper, in order to examine whether our new reinforcement learning works
also in an RChNN, we set a simple goal-reaching task as shown in Fig. 1.

Critic
l NN

7 input signals
(1/2dg, sinfg, cosbs, 1/2dw (1,2,3,4))

Fig. 1. Chaos-based reinforcement learning system in an agent and a goal-reaching
task

Table 1. Parameters used in the simulation

Actor |Critic
Number of hidden neurons 100 | 10
Gain of Output 1
sigmoid function: g Hidden 2 1
Output 0.01 1
Learning rate: n Hidden(FW) | 0.01 | 1
Hidden(REC)| 0 -

Hidden(FW) [-1,1]
Range of initial weights|Hidden(REC)|varied| -
Output [-1,1]

In this simulation, as shown in Fig. 1, there is a 20 x 20 field. An agent
with a radius of 0.5 and a goal with a radius of 1.0 are located randomly at
the beginning of each episode. The agent catches 7 input signals representing
the distance and direction from the agent to the goal and the distance to each
wall, and inputs them to each neural network as in Fig. 1. Each of the two actor
outputs represents the agent’s movement in one step in the x-direction or the
y-direction respectively, but they are normalized without changing its moving
direction so that the movable range becomes a circle with a radius of 0.5. When



Title Suppressed Due to Excessive Length 5

the agent reaches the goal, it gains 0.4 reward. When the agent hits the wall, the
agent is given a penalty of -0.01. One episode finishes when the agent reaches
the goal or reaches 1,000 steps that is the upper limit of the step. The agent
learned 50,000 episodes in total.

Fig. 2 shows the learning curve. In order to see the early stage of learning,
the horizontal scale is expanded in (a), while in order to see the late stage of
learning the vertical scale is expanded in (b). Both red and blue lines show the
number of steps to reach the goal but the red one is plotted at each episode while
the average value over each 100 episodes is plotted as the blue one. Fig. 3 (a)
shows sample trajectories after learning for 8 patterns when the goal was located
at the center. Fig.3 (b) shows the changes in the critic value for 8 trajectories in
Fig. 3 (a).

As the number of episodes increases, the number of steps to the goal de-
creases. The agent after learning moves toward the goal, and the critic becomes
higher as the agent approaches the goal not depending on the goal position. We
can see that an agent having an RChNN can learn a simple goal-reaching task
with new reinforcement learning.
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Fig. 2. Learning curve
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Fig. 3. 8 sample trajectories after learning and the critic value change for each trajec-
tory
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Next, we compare the learning success rate between an RChNN and a reg-
ular ChNN without refractoriness (the refractoriness term in equation (3) is

removed). The range[—w2EC wEEC] of the recurrent connection weights wZE¢

max max
was changed from 0.3 to 2, and the number of successful learning runs in 20 runs
for each different weight range is compared as shown in Fig. 4. Regardless of
having refractoriness, the number of unsuccessful runs increases as the recurrent
connection weight decreases, but the success rate decreases faster in the case of

without refractoriness.
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Fig. 4. Comparison of the learning success rate for the various range of recurrent con-
nection weights in the hidden layer between the cases with and without refractoriness.

The agent behaviors before learning and after 100 episodes of learning for
both cases when the weights range of the recurrent connection weights wZZ¢ is
2.0 are shown in Fig. 5. We can see that the agent behavior is more exploratory
with refractoriness than in the case without refractoriness. For the case without
refractoriness, the agent moves toward the wall before learning (b-1). However,
the agent gets punished by crashing, and after 100 episodes, the agent becomes
more exploratory. In Fig. 4, when wZE¢ = 2. the agent succeeded in all the 20

runs finally in both cases.



Title Suppressed Due to Excessive Length 7

(a-1) Before learning (a-2) After 100 episodes of learning

(a) With refractoriness
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(b-1) Before learning (b-2) After 100 episodes of learning

(b) Without refractoriness

Fig. 5. Comparison of the agent’s exploration at the beginning of learning. (wﬁﬂc =2)

In order to observe the relationship between degree of chaos and learning
success rate, we calculate Lyapunov exponent. Lyapunov exponent is an index
for degree of chaos in a dynamic system. If Lyapunov exponent is positive, the
system is chaotic. Here, the network state is updated for 50 steps using only
the recurrent connections, and is compared between the cases when a small
perturbation whose size is 0.001 is added or not to initial state. Then Lyapunov
exponent A is calculated for 20 networks with different weights as

A LSy In etrar 12
“Hm 2l dye (12)

p=1t=1

d is the distance in hidden state between the cases when a perturbation is added
or not.
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Fig. 6. Comparison of the Lyapunov exponent between the cases with or without
refractoriness for the various ranges of the recurrent connection weights in the hidden
layer.

In, Fig. 6, as the recurrent connection weights decreases, the degree of chaos
decreases. The dynamics is more chaotic in the case with refractoriness than
without refractoriness. The degree of chaos becomes stronger by introducing
refractoriness. From the similarity of the trend between Fig. 4 and Fig. 6, intro-
duction of refractoriness makes the degree of chaos strong and largely influences
to the learning performance. We think that in the case with refractoriness, more
exploratory behavior based on high degree of chaos is the source of the high
successful learning rate for small recurrent connection weight ranges. Lyapunov
exponent increases by using symmetrical activation function, but here we use

Eq. (5).

4 Conclusion

In this paper, we used a refractoriness-originated chaotic neural network in our
new reinforcement learning, and showed that the network can learn a simple
goal-reaching task. As the recurrent connection weights decrease, the success
rate decreases more slowly than the case without refractoriness, and that is
very similar to the change in Lyapunov exponent. From the observation of the
agent behavior at an early stage of learning, it is known that the introduction
of refractoriness makes the degree of chaos strong and leads more exploratory
behavior. That would be the reason why the success rate is larger in the case
with refractoriness for the same range of the recurrent connection weights.
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