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Abstract: In this paper, it was confirmed that a real mobile robot with a CCD camera could
learn appropriate actions to reach and push a lying box only by Direct-Vision-Based reinforcement
learning (RL). In Direct-Vision-Based RL, raw visual sensor signals are the inputs of a layered
neural network; the neural network is trained by Back Propagation using the training signal that
is generated based on reinforcement learning. In other words, no image processing, no control
methods, and no task information are given at premise even if as many as 1536 monochrome visual
signals and 4 infrared signals are the inputs. The box pushing task is rather difficult than reaching
task for the reason that not only the center of gravity, but also the direction, weight and sliding
character of the box should be considered. Nevertheless, the robot could learn appropriate actions
even if the reward was given only when the robot was pushing the box. It was also observed that
the neural network obtained global representation of the box location through the learning.
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1. Introduction

Many of modern robots are utilizing visual sensors to
get plenty of information about environment. The vi-
sual sensor provides us a huge number of sensor signals.
Even for the robot in which learning is a special feature,
Applying image processing to the visual signals is taken
for granted generally to extract some useful pieces of
information and to assign the present visual signals to
one state in state space. However, useful knowledge to
solve a given task is often included in the image process-
ing or other pre-processings. For example, in the work
of Asada et al., when the soccer robot learned shoot ac-
tion, the ball position and size, the goal position, size,
and orientation were extracted from the image captured
by the robot1). In that case, it is also a very intelligent
process that the robot notices such information is im-
portant to solve the task, and that it finds how the such
information can be extracted from the image.
These are based on the traditional idea that in or-

der to make up high intelligence, the process from sen-
sors to motors should be divided into some functional
modules such as image processing, action planning, and
control at first, then each module should be sophisti-
cated, and finally they should be integrated into one
intelligent process. This tendency can be seen in the
brain research as well. However, reinforcement learn-
ing is an autonomous learning based on the sense-and-
action loop as well as the learning of our living things.
When we see the knowledge from the brain research, it
is noticed that the boundary between functional areas
is not so clear. The authors think that a variety levels
of abstracted information existing between sensors and
motors is the origin of our intelligence.
Direct-Vision-Based Reinforcement Learning(RL)2)

is one of the ways to utilize RL in robot-like system
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Figure 1: Direct-Vision-Based Reinforcement Learning.

with sensors and motors on the basis that given knowl-
edge is reduced as much as possible. Concretely, a lay-
ered neural network is employed; the raw sensor signals
are the input and motor commands are the output of
the network as shown in Fig. 1. The main advantage
is that RL does not remain only as the learning of ac-
tion planning, but also can be extended as the learning
for the whole process from sensors to motors including
recognition, memory, and so on. The abstracted state
representation in line with its purpose is formed in the
neural network; that can be expected to lead to the
emergence of high-order functions.
By simulation, it has been confirmed that a mobile

robot with a linear monochrome visual sensor can reach
a black target object2)3). The neural network formed
global representation of the target location, such as
whether the target is located at the right hand side or
left hand side. Each raw visual sensor signal represents
only a local information about the object. This means
that the neural network could integrate the local sen-
sor signals into global representation only through the
learning.



It was also shown that when the asymmetrical mo-
tion character was employed in the robot, the robot can
learn appropriate motions, and the representation of the
hidden neurons changes adaptively and reasonably2)3).
Furthermore, in the simulation of obstacle avoidance,
the state that the target object is just behind the ob-
stacle not depending on the object location was rep-
resented in the hidden layer of the neural network2)4).
This information can be considered as a higher order
representation than the information of the object loca-
tion. Moreover, in Direct-Vision-Based RL, the learning
is fast and stable due to the local representation of the
input signals2)5).
It has been confirmed that a real mobile robot named

Khepera with a CCD camera could learn to reach a
target object by Direct-Vision-Based RL even though
reward was given only when the robot reached the tar-
get, and no image processing was given beforehand for
64x24=1536 visual sensor signals6). However, the task
itself is easy in the meaning that a designer can write a
program to realize such motions easily.
In this paper, a rather difficult task, “Box Pushing”

is employed. It is examined whether the robot can learn
to reach and push a lying rectangular parallelepiped box
without any advance knowledge about the task. In this
task, the robot should vary its motion according to not
only the location, but also the direction of the box. It
should also know the degree of sliding and the weight of
the box; those cannot be obtained from the image, but
from its experiences.

2. Reinforcement Learning

In this paper, actor-critic architecture7) is employed,
and actor (action command generator) and critic (state
value generator) are composed of one layered neural net-
work. This means that the hidden layer is used com-
monly by both actor and critic. TD (Temporal Differ-
ence) is applied for the learning of the critic. TD error
is defined as

r̂t = rt + γP (st)− P (st−1), (1)

where γ is a discount factor, rt is a reward, st is a state
vector (sensor signals), and P (st) is a state value. The
state value at the previous time P (st−1) is trained by
the training signal as

Ps(st−1) = P (st−1) + r̂t = rt + γP (st), (2)

where Ps(st−1) is the training signal for the state value.
On the other hand, the motion commands of the robot
is proportional to the sum of the outputs of a(st) and
random numbers rndt as trial and error factors. The
actor output vector a(st−1) is trained by the training
signal as

as(st−1) = a(st−1) + r̂t rndt−1. (3)

The neural network is trained by Back Propagation ac-
cording to Eq. (2) and (3). By this learning, motion
commands are trained to gain more state value.
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Figure 2: Experimental environment.
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Figure 3: A mobile robot named “Khepera” with a CCD
camera.

3. Experiment

3.1 Experimental Setup

The experimental environment is as shown in Fig. 2.
The action area is 70×70cm which is surrounded by a
height of 10cm white paper wall, and a fluorescent light
is set to keep stable brightness. As shown in Fig. 3, a
small mobile robot (AAI, Khepera) has one CCD cam-
era (KEYENCE, CK-200) with 114 degree of visual field
by a wide angle lens. By the property of the camera, the
central part of the image is brighter than the peripheral
part. Furthermore, due to distortion, a straight line be-
comes curved around the right or left edge of the image.
The visual sensor image is captured by a capture card on
a PC. The number of pixels is 320× 240 originally, but
by the limitation of memory, only the lower half of the
image was used after transforming into a monochrome
image and averaging 5 × 5 area. Then 64 × 24 = 1536
visual signals are the input of the neural network af-
ter normalizing into a real number between 0.0 and 1.0.
Here, the value for the darkest pixel is 1.0, and that for
the brightest one is 0.0. Four infrared(IR) sensor signals
are also added to the input. All of them are located at
the front of the robot as shown in Fig. 3. Each of these
sensors is used like a touch sensor such that the input
signal from the sensor to the neural network is a binary
value; it is 1.0 when the box is located just in front of
the IR sensor and the sensor takes the maximum value.



The target object is a lying rectangular parallelepiped
box made of paper. The size is 30mm×70mm×30mm.
Since the contents are empty, it is very light. The outer
color is black, while the inner color is white. Since the
box has a pipe-like shape, and the smaller sides are
covered with no paper, the white inside is seen through
the smaller sides.
The neural network has three layers; the number of

neurons in each layer is 1540 in input layer, 100 in hid-
den layer, and 3 in output layer. The initial hidden-
output connection weights are all 0.0, while input-
hidden weights chosen randomly from -0.1 to 0.1. One
of the outputs is used as critic after adding 0.5. A small
reward 0.018 is given when two IR sensors (No.2 and 3
in Fig. 3) take the maximum value and the both motor
commands are positive. When the robot misses the box
out of its visual field, critic is trained to be 0.1. This
corresponds to -0.4 for the training signal of the neural
network. When the robot continues to get the reward
for 10 time steps, the robot misses the box, or 50 time
steps passes, one trial finishes.
Two of the three outputs are used as actor outputs.

Each of them is used to generate a motor command for
the right or left wheel. The random number added to
each actor output as a trial factor is an uniform random
number powered by 3.0 whose value range is -0.1 to 0.1.
The actor output after added by the random number is
multiplied by 8.0, and one of the integer number from
-3 to 3 is chosen by rounding off. The number is sent to
the robot as a motor command for each wheel through
RS232C. At the beginning of the learning, the random
number that is less than 0.05 was not used, because
the motor command becomes 0 when a small random
number is rounded off. If the training signal for each of
three output neurons is less than -0.4 or more than 0.4,
the training signal is set to be -0.4 or 0.4 respectively.
Next, it is explained how to decide the initial location

of the robot at the beginning of each trial. At the first
stage of the learning, a target center of gravity is chosen
randomly in a trapezoid area in the image, the robot is
controlled in order that the center of gravity of the black
area of the binarized image comes close to the chosen
target center according to the given program. When the
difference between the center of gravity and the target
center is within 1 pixel, the learning begins. At the
beginning of the learning, the trapezoid area is very
small and is located at the lower part of the image so
as that the robot is located just in front of the center of
the long side of the box. The trapezoid area becomes to
spread wider to the upper area of the image gradually
according to the progress of learning. In the most cases,
the robot faces the long side of the box, and the angle
between the moving direction and the long side of the
box was not different so much from 90 degree. At the
second stage of the learning, at the half of the trials, the
angle between the moving direction and the long side of
the box begins to vary by rotating on the box after
reaching the target location of the stage 1. The angle
becomes larger as the learning progresses. When the

box comes close to the white wall, the box was moved
by the authors just after the trial.
All the learning is performed on-line using the real

mobile robot. No learning on simulation was done. Fig.
4 shows the timing chart when the robot is learning its
action. One time step corresponds to 320msec. The nec-
essary time to execute each process is approximately as
shown in Fig. 4. The video signal transmission includes
the transformation into monochrome image and averag-
ing operation of 5× 5 pixels. The learning includes not
only backward computation of the neural network, but
also two sets of forward computation. That is because
in the learning phase, the input signals at one time step
before have to be entered, and after the backward com-
putation, forward computation was done for the present
input signal to reflect the weight change by the preced-
ing learning in the critic output. As shown in Fig. 4,
action commands are transmitted at the halfway be-
tween two successive capturing times. In other words,
the TD error is influenced by both the present and pre-
vious action commands actually.
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Figure 4: Timing chart of each main event.

3.2 Result

The robot could learn to go forward soon after begin-
ning, and the rotation depending on the box location
could be observed after 300 trials of learning. Figure 5
shows two samples of robot’s behaviors after 5000 tri-
als. Although no knowledge about image processing,
control and task was given to the robot, it is seen that
the robot could reach the target box and continue to
push it.
The robot’s motion depended not only on the location

of the box, but also on the direction of the box. Then
the box was located as one of two ways as shown in
Fig. 6. Fig. 7 shows the robot’s loci and sequences of
the captured images, and Fig. 8 shows the change of
the center of gravity in binarized image. It is seen that
even though the location of the box is the same, the loci
are different when the direction of the box is different.
When the box was put as (a) in Fig. 6, the robot

went straight at first, then rotated anti-clockwise, and
reached almost the center of the long side of the box as
shown in Fig. 7(a). While, when the box was put as (b)
in Fig. 6, the robot rotated anti-clockwise at first, then
went straight as shown in Fig. 7(b). It is seen that the
robot rotated clockwise slightly in the latter half of the
trial, and finally, it reached the right edge of long side
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Figure 5: Two examples of the robot behaviors after learning.

of the box. A sequence of photos from top view of this
trial also can be seen in Fig. 5(b).
The reason of the behavioral difference is suggested

as follows. In the case of (b), if the robot makes a
frontal approach toward the center of the long side, it
has to go a long way round and takes a long time to
reach. On the other hand, if it goes forward, the edge
of the box is caught by one of the IR sensors; the robot
cannot rotate relatively to the box. Furthermore, if
the approaching angle is small, both IR sensors can not
take the maximum value soon. Accordingly, the robot
rotated at first, and then approaching the box while
keeping the approaching angle in some degree. After the
robot touched the box, since the box rotated by robot
pushing, the robot moved from in front of the right edge
of the long side to in front of the center. Since the task
required the location and direction of the box as above,
it can be said that the location and direction could be
extracted from many visual signals through learning.
Fig. 9 shows the connection weights with the input

units for each of three hidden neurons. Each of those
has the maximum connection weight with one of the
output neurons, ignoring sign. The weight value looks
just a random number at a glnace. However, by careful
looking, it is noticed that the connection weight that
is projected on the upper area (y is large) has a larger
value in the hidden neuron No. 32 that mainly con-
tributes the critic output. The shape of the area where
the weight value is small (black) is similar to the image
that the box is just in front of the robot as shown in
the figures in the lowest row in Fig. 7. In the other
two neurons that contribute the actor outputs, the con-
nection weight that is projected on the right area (x is
large) has a larger value. From the shape of the area
where the absolute weight value is large, it is thought
that these neurons detect lateral shift of the box from

the situation that the box is just in front of the robot.
Furthermore, the irregularity of the weight value distri-
bution was originated from the initial weight value.
Table 1 shows the change of the correlation between

x or y and weight value through learning where (x, y)
is the corresponding pixel location in the image. In the
hidden neuron No. 32, the absolute correlation between
y and weight becomes larger. While, in the hidden neu-
ron No. 70 and No. 34, the correlation between x and
weight becomes larger. This means that these neurons
represent global information through learning, keeping
the information of the initial connection weights. This
is the same as observed in the paper8) in which global
information is given as the training signal of a neural
network whose input is local sensor signals.
Then, some actual images are captured by locating

the box in order. In one series of the box location, the
forward distance y from the robot was constant and the
lateral distance x was varied. In the other series, the
lateral distance x was constant and the forward distance
y was varied. In both cases, the long side of the box is
perpendicular to the moving direction of the robot.
Fig. 10(a) shows the hidden neurons’ outputs as a

function of the lateral distance x in the former case,
while Fig. (b) shows the hidden outputs as a function
of the forward distance y in the latter case. x and y
coordinates are the same as shown in Fig. 6. Totally, it
is seen that the irregularity of the output curve becomes
smaller through learning. The hidden neuron No. 32
represents mainly whether the box is just in front of
the robot or not. The hidden neuron No. 34 represents
mainly whether the box is located in the right hand side
or left hand side, while the hidden neuron No. 70 does
not represent clearly like No. 32 and No. 34. It can be
thought that the concept of close of far, and the concept
of right or left can be obtained through learning.
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Figure 7: The robot locus and a series of images after learning for each of the two box directions at the same place.
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Figure 6: The location and direction of the box in the
following experiment.

4. Discussion

In this experiment, the robot began to go forward just
after the learning starts. This is because the reward is
given only when the motor commands for two wheels
are both positive, and the reward can be obtained often
because the robot is located just in front of the long side
of the box initially at each trial. The reason why the
learning performed well may deeply depend on the small
random trial and the small learning rate. If they are
large, the robot may learn going backward. Once the
robot learns going backward, it hardly gets the reward.
On the other hand, in the above experiment, the robot
could not obtain the action to rotate at the same place
even if the action seems optimal. One possible reason
is that the random number and the learning rate is too
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Figure 8: The change of the center of gravity of the
box. Plot symbol indicates the number of IR sensors
that take the maximum value as ◦: 0, �: 1, and •: 2.

small to learn in 5000 trials inversely.
From the above discussion, the reward, the initial

location at each trial, and the random factor at each
time step are very important factors for the learning.
Strictly, it can be said that they are some given knowl-
edge to the robot. However, it does not constrain the
learning, it is better to say that they are not some direct
knowledge but some hints for the robot.

5. Conclusion

A real mobile robot could learn to go and push a box
without giving any image processing, control methods,
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Figure 9: Three hidden neurons’ connection weights
with the inputs. Each hidden neuron has the maximum
connection weights with one of the output neurons.

and task knowledge directly. It can be said that the
neural network extracts the location and direction from
the image with 1536 pixels to generate a series of appro-
priate motions only by reinforcement learning. It was
also observed that the neural network extracted some
global information. However, since the environment is
very ideal, application to more real world is one of the
most important problems. The way of efficient trial is
also a big problem to be solved.
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