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Abstract:  Temporal abstraction and exploration are both very important factors to determine the performance in 
reinforcement learning.  The author has proposed to focus on the deterministic exploration behavior that is obtained 
through reinforcement learning.  In this paper, a novel idea that deterministic exploration behavior can be considered as 
temporally abstract actions or macro actions was introduced.  It was actually shown in some simulations that the 
deterministic exploration behavior obtained through the learning of a task accelerates the learning of another similar 
task without any definition of abstract actions.  A recurrent neural network was used for the learning, but the knowledge 
obtained through the first learning was used effectively in the second learning without being destroyed completely even 
though it did not work in a more difficult task.  Furthermore, when the agent was returned to the first task, the learning 
was still faster than the learning from scratch.  An interesting phenomenon was observed in the simulation that 
context-based exploration behavior was acquired through the learning of a task that did not require such behavior. 
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1. INTRODUCTION 

Reinforcement learning (RL) realizes autonomous 
and purposive learning, and that is a major reason why 
it is expected as a promising technique in robotics and 
other autonomous learning systems.  The author also 
has a deep interest in explaining the emergence of 
various functions of real lives based on RL and in 
bridging the deep gulf between our intelligence and the 
modern artificial intelligence.  Generally, abstraction in 
both space and time domains is expected to accelerate 
learning drastically.  The author also expects at present 
that to investigate the emergent process of abstraction 
leads to understanding the origin of our intelligence. 

As for the temporal abstraction, many researches 
have been done under the term of hierarchical RL or 
subgoal, and many of them have aimed at autonomous 
subgoal finding such as [1].  However, in the most cases, 
hierarchical structure is given beforehand and 
appropriate subgoals are found among some candidates 
through learning.  Some techniques[2][3] have been 
proposed to find subgoals autonomously in the options 
framework[4] by looking for “bottleneck states” without 
giving a hierarchy beforehand.  However, they need a 
special process to find the bottleneck states, and the 
transfer to another task is not mentioned.  Furthermore, 
they seem difficult to be applied to continuous state 
space and also to be extended to higher-order 
abstraction. 

The autonomous learning ability of RL is supported 
by trial and error based on reward and punishment.  The 
trial and error is usually called “exploration” and it is 
clear that exploration also deeply influences on the 
performance of RL. Usually, it is realized by stochastic 
factors using random numbers in action selection such 
as -greedy or Boltzmann selection[5]. 

The author has noted the difference between what 
we are doing as exploration and the exploration that is 
usually implemented in RL.  The former does not seem 

to be realized by just stochastic factors, but seems to be 
performed as deterministic action selections using the 
context and the knowledge obtained through the past 
experiences.  As oppose to the random exploration, the 
deterministic exploration looks intelligent and need 
some knowledge.   

For example, when we face a fork on a road as 
shown in Fig. 1, we don’t choose a motion randomly at 
each actuator level, but choose one of the paths to go on.  
When we face a door that we don’t know how to open 
and find a button just beside the door, we must try to 
push it to open the door.  Therefore, the author has 
raised the necessity of such kind of exploration, and has 
shown by simulation of a simple learning task that an 
agent could learn a context-based deterministic 
exploration behavior by RL using a recurrent neural 
network[6][7]. 

In the simulation, no stochastic exploration on the 
abstract action level is done and also even what abstract 
actions are was not given beforehand.  However, when 
we see the deterministic exploration obtained by RL, the 
agent seems to choose one of the abstract actions rather 

 
Fig. 1 The relation between deterministic exploration 

and temporal abstraction is explained in a simple 
fork problem.  Before the fork, we don’t choose a 
motion of each actuator randomly, but usually 
choose to go on one of the paths.  In this case, it 
is supposed that we have already obtained 
abstract action through our past experiences. 



than one of the primitive actions.  The author thought 
that this behavior must deeply relate to the temporal 
abstraction.  Since a recurrent neural network is used, 
spatial abstraction[8] and the extension to higher-order 
abstraction can be also expected, the author thinks, and 
the application to continuous state space might be easy.  
In order to call such behaviors abstract actions, the 
agent, at least, has to explore efficiently in a similar task 
in which the abstract actions are still useful.  However, 
since the exploration behavior is obtained in a recurrent 
neural network, it is concerned that the learned 
exploration behavior is destroyed in the learning of 
another task and does not accelerate the learning.  In 
this research, it is examined whether the agent that 
learned deterministic exploration in a small room of grid 
world can learn the actions to the goal efficiently in a 
4-room task in which the obtained exploration behavior 
can be utilized. 

2. TEMPORAL ABSTRACTION ACQUIRED 
THROUGH REINFORCEMENT LEARNING 

In [4], a 4-room task is introduced as an example, 
and it is explained that the learning is accelerated by 
introducing abstract actions named hallway options.  
However, hallway options, each of which is a 
combination of primitive actions to go to one of the two 
hallways in one room, are given beforehand.  When we 
think of the fork case described above using Fig. 1 as a 
RL task, we deal with it as a binary decision task by 
defining two primitive actions, each of which is to go on 
one of the two paths.  In order to build an intelligent 
robot or agent, autonomous acquisition of abstraction 
process is thirsted, but in this case, temporal abstraction 
based on our experience has been given by us 
unconsciously.  The author thinks that to investigate the 
emergence of the abstraction process opens the way to 
higher level of abstraction that we are also doing 
usually. 

In the fork task, it can be thought that we obtained 
the knowledge through our past experiences that to go 
on one of the paths is a better choice than to make 
random motions at each actuator level even though we 
don’t know which path is better to go on.  In order to 
simplify this situation, the author set up a binary 
decision task on a grid-world room as shown in Fig. 2, 

where there are two landmarks of goal, but one of them 
is the real goal and the other is a fake.  The agent does 
not know which is the real goal in advance.  It was 
shown that the agent, who has a recurrent neural 
network, learned an action series to go to one of the 
landmarks at first, and then to go to the other one if the 
first landmark was not the real goal[6][7].  In the 
obtained behaviors, the distance to each landmark seems 
to be reflected to decide the landmark to go first. 

In this case, we did not give and also hardly know 
definitely what are the options or abstract actions.  
However, as discussed above using the fork task, since 
the agent seems to know that it is a better choice to go 
to one of the landmarks to reach the goal, the author 
thinks the acquired behaviors can be interpreted as 
abstract actions.  The reason why the abstraction is so 
important is that learning in a similar situation can be 
accelerated.  The purpose of this research is to examine 
whether the agent after the learning of the binary 
decision task in a 1-room environment can learn faster 
in a 4-room task without giving what are the options or 
abstract actions definitely. 

One thing to be noted to make the abstraction work 
effectively is that the choice of sensor is a critical factor.  
If the sensor provides some absolute information, for 
example, a camera equipped at the ceiling provides the 
world coordinate of a robot, the similarity for the robot 
between two situations is hardly expressed. Therefore, it 
is important to use a sensor that provides relative 
information such as a camera mounted on the robot.  It 
is supposed that since the agent observes its absolute 
location in [2] and [3], it is not easy to transfer the 
knowledge to another task.  Here, it is assumed that the 
agent in the simulations has the sensor as shown in Fig. 
3 that has 9x9 visual field whose center is the location 
of the agent.  This means that the visual field moves 
together with the robot.  

3. LEARNING 

The learning is very simple.  Just a popular 
three-layer Elman-type recurrent neural network is 
employed.  In an Elman-type recurrent network, the 
hidden outputs are fed back to the input layer at the next 
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Fig. 2 1-room task and a sample exploration behavior 

acquired by RL using a recurrent neural network.  
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Fig. 3 The visual sensor used in the simulation. 

Its visual field moves together with the agent.  



time step.  Sensor signals of the agent are the external 
inputs of the network.  The number of output neurons is 
the same as the number of the executable primitive 
actions, and each output is used as Q value for the 
corresponding action.  The training signal Qs,at 1

for the 
Q value of the previous action at 1  is generated 
autonomously from the given reward r  and the Q value 
for the present action at  based on Sarsa algorithm[5] as 

Qs,at 1
= rt + Qat

(st)  (1) 

where  is a discount factor.  The training signal is given 
only to the output corresponding to the performed action 
at previous time step, and the other outputs are not 
trained.  The network is trained by BPTT (Back 
Propagation Through Time)[9] after the outputs of the 
network from the input signals at the previous time step 
are computed again.  The learning is episodic, and one 
trial means one episode. Before each trial, all the hidden 
outputs are reset to 0.0, and after reaching the goal, all 
the Q values are supposed to be 0.0.  When the agent 
reaches the goal, it can get a reward r = 0.8, otherwise r 
= 0.0.  Accordingly, just before reaching the goal, the 
training signal for the Q value for the performed action 
is identical to the reward value; otherwise the training 
signal is identical to the discounted Q value at present.  
The output function of each hidden and output unit is a 
symmetrical sigmoid function that ranges from -0.5 to 
0.5.  In order to adjust the value range to the range of 
the Q value, 0.4 is added to the actual output before 
substituting it in Eq. (1), while 0.4 is subtracted from 
the training signal derived by Eq. (1) before using it as 
the actual training signal in BPTT.  Initial connection 
weights from the external inputs to the hidden layer are 
random small numbers from -0.5 to 0.5.  The initial 
connection weights from the hidden layer to the output 
layer are all 0.0, and as for the feedback connections of 
the hidden layer, initial weights are 4.0 for the 
self-feedback and 0.0 for the other feedback.  That 
enables the error signal to propagate to the past states 
effectively in BPTT without diverging.  

4. SIMULATION 

4.1 Setups 
The agent has a visual sensor that has 9x9=81 

sensor cells. Each sensor cell has a receptive filed 
whose size is just the same as one square in the room, 
and catches whether a landmark exists on the square or 
not as a binary value as shown in Fig. 3.  As mentioned, 
so as to perceive the relative information of the agent, 
the sensor moves together with the agent.  It is assumed 
that the agent cannot see the outside of the room where 
the agent is, and so the output of every sensor cell 
whose receptive field covers outside of the room is 0.0.  
The agent can identify which room it is in now.  If the 
agent is in the room 1, the four signals are 1, 0, 0, 0.  In 
the 1-room environment, all the signals are 0.  The 
number of the total external input signals is 81+4=85 as 
can be seen in Fig. 4.   

The executable primitive actions are “going up”, 
“right”, “down”, and “left”.  The output layer of the 
network has 4 units, each of which represents the Q 
value for the corresponding action.  The state transition 
is deterministic.  If the agent hits against a wall, it stays 
at the same square. -greedy is employed for the random 
exploration, and the value of  is 0.1.  The discount 
factor  is 0.92.  The neural network has three layers and 
the hidden layer has 30 hidden neurons. 

At first, the agent learned deterministic exploration 
in a 5x5 small grid world where two landmarks of goal 
exist and one of them is the real goal.  The task is called 
1-room task here.  Fig. 2 shows an example of the robot 
exploration behavior after the first learning.  It can be 
seen that the robot went to one of the two landmarks at 
first, and then went to the other after it arrived at the 
first one and knew that it was not the real goal. 

After that, the learning moves to the second stage.  
The agent is put on a random square in the 4-room 
world as shown in Fig. 5 that is similar to the 4-room 
task in [4].  In this world, there are four small rooms 
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Fig. 4 An Elman network and its input and output 

signals in the simulation. 
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Fig. 5 4-room environment.  There are four rooms and 

each of them has two doorways to the next room.  
When the agent arrives at the door (G), it is 
moved immediately to the next room.  The 
configuration of the door changes at every some 
thousands of trials, but the real goal is always 
located between the room 2 and the room 3.  



whose size is 5x5.  The size of each room is identical to 
the 1-room task.  The rooms are allocated as shown in 
Fig. 5, and are connected to the next room by a doorway.  
Each room has two doorways, and the doorway location 
is randomly chosen.  A landmark is located just in front 
of each doorway, but the agent can observe the 
landmarks only in the room where the agent is now in 
even though the visual field reaches a landmark in 
another room.  By using the visual sensor consisting of 
9x9=81 visual cells, the agent can observe both 
landmarks wherever the agent is in the room.  When the 
agent arrives at the square where a landmark exists, it is 
moved immediately to the square located at the opposite 
side of the doorway in the next room.  When the agent 
arrives at the goal, it gets a reward and the trial finishes.  
The agent is put randomly on one of the squares in the 
world again and a new trial begins.  The real goal is 
always located at the wall between the room 2 and room 
3.  In the 1-room task, the agent is required to keep the 
context information representing whether the agent 
already arrived at one of the landmark or not.  In the 
4-room task, the agent is not required to keep any 
context information, even though the size of the 
environment is larger than the 1-room task.  This means 
that the agent can learn a solution using a regular 
feedforward neural network. 

 
4.2 Results 

Fig. 6 shows the learning curves when the door 
configuration is fixed.  The vertical axis indicates the 
average number of steps to the goal.  If the agent does 
not reach the goal within 2,000 steps, the trial is cut off.  
One plot is for the case of the agent after the learning of 
1-room task and the other is the case when no learning 
had been done beforehand.  For reference, the case that 
the action selection is always optimal except for the 
random action that appears with =10% probability and 
the case when the action selection is completely random 
are also plotted in the same graph.  Each plot is the 
average over every 10 trials until the 100th trial, and the 
average over every 50 trials after the 100th trial.  That is 
the reason why the value seems fluctuate more until 
100th trials.  Note that the vertical axis is magnified 

after 2,000th trial.  The data is the average over 5 cases 
of initial weight set and over 30 door configurations for 
each initial weight set.   

At the beginning of the learning, it can be seen 
that the agent that had not learned beforehand took 
around 100steps in average, but the agent after the prior 
learning took less than 30 steps.   Even around the 
5000th trial of learning, the performance is still different 
between them.  The result indicates that the first 
learning accelerates the second learning. 

In order to know how the learning is accelerated, 
the agent’s trajectory at the first trial for each case is 
observed.  Fig. 7 shows the first exploration behavior 
just after the agent finished the first learning and was 
put onto the 4-room world.  The agent went for one of 
the landmarks at first without doing meaningless actions.  
After the agent was moved to the room 1, it moves 
toward the other landmark in the room.  It can be said 
that the agent is able to search the goal so effectively 
utilizing the knowledge obtained through its past 
experiences even though some redundant actions were 
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Fig. 6 Comparison of the learning curve with respect to 

whether the learning of the 1-room task had been 
done beforehand or not.  
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Fig. 7 The exploration behavior just after the agent who 

has already learned in 1-room environment was 
put onto the 4-room world. 
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Fig. 8 The exploration behavior just after the agent who 

has not learned before was put onto the 4-room 
world.  The agent was learning while moving.  
Light-colored arrows indicate non-greedy actions. 



still taken such as the repetition of the move between 
the room1 and room 2.  The result may be considered as 
a phenomenon within the range only to be expected, but 
it is important to show that even though the 
environment is similar to the previous one, obtained 
knowledge can be effectively utilized in another task 
without teaching definitely what knowledge is useful. 

On the other hand, the exploration behavior of the 
agent without learning the first task is shown in Fig. 8.  
In this figure, the agent did not act randomly, but took 
the same path some times.  The reason might be that at 
the first action in the first trial, all the Q values are 0.4, 
and as long as the agent did not arrive at the target, the 
Q value for the action is decreased.  It is difficult to say 
how the Q value changes through learning because a 
recurrent neural network is used as a function 
approximator.  However, it is supposed that chosen 
action changes periodically by the modification of the 
bias value in each output unit, and it is not easy to 
discriminate the different states for the network at the 
early stage of learning.  Therefore, the agent took the 
same loop several times, such as square loop at the 
upper-right area.  That can be thought as a kind of the 
effect of the “optimistic initial value”[1]. 

In the next simulation, the configuration of the 
doors changes at every 3,000 trials.  The location of a 
door is chosen randomly at each wall between two 
adjacent rooms except for the configuration in which 
two landmarks are put on the same square. The goal 
location exists always between the room 2 and room 3.  
Fig. 9 or 10 shows the change of the learning curve 
according to the number of experiences of different door 
configuration for each of the cases of prior learning and 
non-prior learning respectively.  Furthermore, each 
learning curve is average over 5 simulation runs with 
different initial connection weight set.  Note that the 
scale of the vertical axis is different between Fig. 9 and 
Fig. 10. 

It can be seen that in both cases, learning becomes 
faster according to the number of experienced 
configurations.  It can be said that the agent obtained a 
strategy to respond appropriately to various 
configurations of doors and to go to the goal between 
the room 2 and 3 through the learning for many 
configurations.  By comparing the two cases, it can be 
said that the previous learning accelerates such 
over-configuration learning.  However, if the goal 
location changes as well as the configuration of doors, 
learning often failed.  In this case, the agent sometimes 
has to move the opposite direction even though the 
configuration of doors and the agent location are both 
completely the same as one past state, and the 
knowledge obtained through the past learning might be 
broken.  If we are in the same situation, we can learn the 
solution effectively.  This can be a future issue. 

From these results, the deterministic exploration 
obtained by the learning in the past experiences relates 
deeply to the temporal abstraction, and there is a 
possibility that this approach can be a solution for the 
discovery problem of temporal abstraction. 

Finally, it is examined how much part of the 
knowledge obtained in the first learning is broken 
through the second learning, and also how the 
knowledge obtained in the 4-room task is useful in the 
1-room task.  In the 4-room task, although the 
environment is larger than the 1-room task, context 
information is not necessary to know the optimal path.  
Then the learning performance when the agent is 
returned to the 1-room environment is observed.  Fig. 
11 shows the learning curve for three cases.  In one case, 
the agent has already learned the 1-room environment at 
first and then the 4-rooms environment.  In another case, 
the agent has already learned only in the 4-room 
environment.  In the other case, the agent learns in the 
1-room environment without any previous learning. 
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Fig. 9 Comparison of the learning curves with respect to 

the number of experienced door-configurations 
when the agent had already learned 1-room 
environment. As for the label of each line, “2nd – 
5th conf.”, for example, means that the average 
learning curve from the second configuration to 
the fifth configuration. 
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Fig. 10 Comparison of the learning curves with respect 

to the number of experienced door-configurations 
when the agent had not learned anything before.  



At the early phase of the learning, the agent after 
the learning in the both environments can reach the real 
goal in the smallest number of steps in average, and 
even for the agent after only the learning in 4-room 
environment, the average steps to the real goal is 
smaller than the agent after no learning.  Two possible 
reasons can be thought.  One reason is that the agent 
learned to go to one of the landmarks and that helps the 
learning faster.  The other reason is that the agent 
learned to go to the other landmark after it reaches one 
of the landmarks even though the 4-room task itself 
does not required such context-based behavior. 

In order to know the reason, the agent behavior is 
just observed on a configuration of the landmarks that 
did not appear in the 4-room environment without 
learning in this environment.  As shown in Fig. 12, it is 
surprising that the agent went to one of the landmarks 
and after reaching it, the agent went to the other 
landmark.  The same behavior can be observed in 
another simulation run with a different initial weight set.  
Although more investigation is necessary, the author 
think that it is more likely that such behavior is obtained 
through the previous learning, because the task itself 
does not require context-based actions, but the 
context-based action realizes effective exploration.  

5. CONCLUSION 

A novel idea that deterministic exploration 
behavior obtained through learning can be considered as 
temporal abstract actions was introduced.  It was 
actually shown in some simulations that the 
deterministic exploration behavior obtained through the 
learning of a task accelerates the learning of another 
similar task.  A recurrent neural network was used for 
the learning, but the knowledge obtained in the first task 
was not destroyed completely but was used effectively 
in the second task even though the agent often failed a 
more difficult task.  When the agent was returned to the 
first task, the learning was faster than the learning from 
scratch.  Furthermore, context-based exploration 
behavior was acquired through the learning of a task 
that did not require such behavior.  The detailed 
investigation should be done in the future. 
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Fig. 11 Learning curve when the agent is returned to the 

1-room environment after the learning in the 
4-room env. and the comparison to the references. 
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Fig. 12 An example of the agent behavior after only the 

learning in 4-room environment where 
context-based actions are not required.  The agent 
did not learn, and just the behavior is observed.  


