
Learning of Deterministic Exploration and Temporal Abstraction
in Reinforcement Learning

Katsunari Shibata shibata@cc.oita-u.ac.jp
Dept. of Electrical and Electronic Engineering, Oita University, 700 Dannoharu, Oita 870-1192

Abstract: Temporal abstraction and exploration are both very important factors to determine the performance in
reinforcement learning. The author has proposed to focus on the deterministic exploration behavior that is obtained
through reinforcement learning. In this paper, a novel idea that deterministic exploration behavior can be considered as
temporally abstract actions or macro actions was introduced. It was actually shown in some simulations that the
deterministic exploration behavior obtained through the learning of a task accelerates the learning of another similar
task without any definition of abstract actions. A recurrent neural network was used for the learning, but the knowledge
obtained through the first learning was used effectively in the second learning without being destroyed completely even
though it did not work in a more difficult task. Furthermore, when the agent was returned to the first task, the learning
was still faster than the learning from scratch. An interesting phenomenon was observed in the simulation that
context-based exploration behavior was acquired through the learning of a task that did not require such behavior.

Keywords: Temporal Abstraction, Deterministic Exploration, Reinforcement Learning, Recurrent Neural Network

1. INTRODUCTION

Reinforcement learning (RL) realizes autonomous
and purposive learning, and that is a major reason why
it is expected as a promising technique in robotics and
other autonomous learning systems. The author also
has a deep interest in explaining the emergence of
various functions of real lives based on RL and in
bridging the deep gulf between our intelligence and the
modern artificial intelligence. Generally, abstraction in
both space and time domains is expected to accelerate
learning drastically. The author also expects at present
that to investigate the emergent process of abstraction
leads to understanding the origin of our intelligence.

As for the temporal abstraction, many researches
have been done under the term of hierarchical RL or
subgoal, and many of them have aimed at autonomous
subgoal finding such as [1]. However, in the most cases,
hierarchical structure is given beforehand and
appropriate subgoals are found among some candidates
through learning. Some techniques[2][3] have been
proposed to find subgoals autonomously in the options
framework[4] by looking for “bottleneck states” without
giving a hierarchy beforehand. However, they need a
special process to find the bottleneck states, and the
transfer to another task is not mentioned. Furthermore,
they seem difficult to be applied to continuous state
space and also to be extended to higher-order
abstraction.

The autonomous learning ability of RL is supported
by trial and error based on reward and punishment. The
trial and error is usually called “exploration” and it is
clear that exploration also deeply influences on the
performance of RL. Usually, it is realized by stochastic
factors using random numbers in action selection such
as -greedy or Boltzmann selection[5].

The author has noted the difference between what
we are doing as exploration and the exploration that is
usually implemented in RL. The former does not seem

to be realized by just stochastic factors, but seems to be
performed as deterministic action selections using the
context and the knowledge obtained through the past
experiences. As oppose to the random exploration, the
deterministic exploration looks intelligent and need
some knowledge.

For example, when we face a fork on a road as
shown in Fig. 1, we don’t choose a motion randomly at
each actuator level, but choose one of the paths to go on.
When we face a door that we don’t know how to open
and find a button just beside the door, we must try to
push it to open the door. Therefore, the author has
raised the necessity of such kind of exploration, and has
shown by simulation of a simple learning task that an
agent could learn a context-based deterministic
exploration behavior by RL using a recurrent neural
network[6][7].

In the simulation, no stochastic exploration on the
abstract action level is done and also even what abstract
actions are was not given beforehand. However, when
we see the deterministic exploration obtained by RL, the
agent seems to choose one of the abstract actions rather

Fig. 1 The relation between deterministic exploration

and temporal abstraction is explained in a simple
fork problem. Before the fork, we don’t choose a
motion of each actuator randomly, but usually
choose to go on one of the paths. In this case, it
is supposed that we have already obtained
abstract action through our past experiences.

than one of the primitive actions. The author thought
that this behavior must deeply relate to the temporal
abstraction. Since a recurrent neural network is used,
spatial abstraction[8] and the extension to higher-order
abstraction can be also expected, the author thinks, and
the application to continuous state space might be easy.
In order to call such behaviors abstract actions, the
agent, at least, has to explore efficiently in a similar task
in which the abstract actions are still useful. However,
since the exploration behavior is obtained in a recurrent
neural network, it is concerned that the learned
exploration behavior is destroyed in the learning of
another task and does not accelerate the learning. In
this research, it is examined whether the agent that
learned deterministic exploration in a small room of grid
world can learn the actions to the goal efficiently in a
4-room task in which the obtained exploration behavior
can be utilized.

2. TEMPORAL ABSTRACTION ACQUIRED
THROUGH REINFORCEMENT LEARNING

In [4], a 4-room task is introduced as an example,
and it is explained that the learning is accelerated by
introducing abstract actions named hallway options.
However, hallway options, each of which is a
combination of primitive actions to go to one of the two
hallways in one room, are given beforehand. When we
think of the fork case described above using Fig. 1 as a
RL task, we deal with it as a binary decision task by
defining two primitive actions, each of which is to go on
one of the two paths. In order to build an intelligent
robot or agent, autonomous acquisition of abstraction
process is thirsted, but in this case, temporal abstraction
based on our experience has been given by us
unconsciously. The author thinks that to investigate the
emergence of the abstraction process opens the way to
higher level of abstraction that we are also doing
usually.

In the fork task, it can be thought that we obtained
the knowledge through our past experiences that to go
on one of the paths is a better choice than to make
random motions at each actuator level even though we
don’t know which path is better to go on. In order to
simplify this situation, the author set up a binary
decision task on a grid-world room as shown in Fig. 2,

where there are two landmarks of goal, but one of them
is the real goal and the other is a fake. The agent does
not know which is the real goal in advance. It was
shown that the agent, who has a recurrent neural
network, learned an action series to go to one of the
landmarks at first, and then to go to the other one if the
first landmark was not the real goal[6][7]. In the
obtained behaviors, the distance to each landmark seems
to be reflected to decide the landmark to go first.

In this case, we did not give and also hardly know
definitely what are the options or abstract actions.
However, as discussed above using the fork task, since
the agent seems to know that it is a better choice to go
to one of the landmarks to reach the goal, the author
thinks the acquired behaviors can be interpreted as
abstract actions. The reason why the abstraction is so
important is that learning in a similar situation can be
accelerated. The purpose of this research is to examine
whether the agent after the learning of the binary
decision task in a 1-room environment can learn faster
in a 4-room task without giving what are the options or
abstract actions definitely.

One thing to be noted to make the abstraction work
effectively is that the choice of sensor is a critical factor.
If the sensor provides some absolute information, for
example, a camera equipped at the ceiling provides the
world coordinate of a robot, the similarity for the robot
between two situations is hardly expressed. Therefore, it
is important to use a sensor that provides relative
information such as a camera mounted on the robot. It
is supposed that since the agent observes its absolute
location in [2] and [3], it is not easy to transfer the
knowledge to another task. Here, it is assumed that the
agent in the simulations has the sensor as shown in Fig.
3 that has 9x9 visual field whose center is the location
of the agent. This means that the visual field moves
together with the robot.

3. LEARNING

The learning is very simple. Just a popular
three-layer Elman-type recurrent neural network is
employed. In an Elman-type recurrent network, the
hidden outputs are fed back to the input layer at the next

 A

G

G

0 1 2 3

4

0

1

2

3

4

A: agent

G: landmark
 of goal

Fig. 2 1-room task and a sample exploration behavior

acquired by RL using a recurrent neural network.

 A

G

G

9

9

visual sensor
Fig. 3 The visual sensor used in the simulation.

Its visual field moves together with the agent.

time step. Sensor signals of the agent are the external
inputs of the network. The number of output neurons is
the same as the number of the executable primitive
actions, and each output is used as Q value for the
corresponding action. The training signal Qs,at 1

for the
Q value of the previous action at 1 is generated
autonomously from the given reward r and the Q value
for the present action at based on Sarsa algorithm[5] as

Qs,at 1
= rt + Qat

(st) (1)

where is a discount factor. The training signal is given
only to the output corresponding to the performed action
at previous time step, and the other outputs are not
trained. The network is trained by BPTT (Back
Propagation Through Time)[9] after the outputs of the
network from the input signals at the previous time step
are computed again. The learning is episodic, and one
trial means one episode. Before each trial, all the hidden
outputs are reset to 0.0, and after reaching the goal, all
the Q values are supposed to be 0.0. When the agent
reaches the goal, it can get a reward r = 0.8, otherwise r
= 0.0. Accordingly, just before reaching the goal, the
training signal for the Q value for the performed action
is identical to the reward value; otherwise the training
signal is identical to the discounted Q value at present.
The output function of each hidden and output unit is a
symmetrical sigmoid function that ranges from -0.5 to
0.5. In order to adjust the value range to the range of
the Q value, 0.4 is added to the actual output before
substituting it in Eq. (1), while 0.4 is subtracted from
the training signal derived by Eq. (1) before using it as
the actual training signal in BPTT. Initial connection
weights from the external inputs to the hidden layer are
random small numbers from -0.5 to 0.5. The initial
connection weights from the hidden layer to the output
layer are all 0.0, and as for the feedback connections of
the hidden layer, initial weights are 4.0 for the
self-feedback and 0.0 for the other feedback. That
enables the error signal to propagate to the past states
effectively in BPTT without diverging.

4. SIMULATION

4.1 Setups
The agent has a visual sensor that has 9x9=81

sensor cells. Each sensor cell has a receptive filed
whose size is just the same as one square in the room,
and catches whether a landmark exists on the square or
not as a binary value as shown in Fig. 3. As mentioned,
so as to perceive the relative information of the agent,
the sensor moves together with the agent. It is assumed
that the agent cannot see the outside of the room where
the agent is, and so the output of every sensor cell
whose receptive field covers outside of the room is 0.0.
The agent can identify which room it is in now. If the
agent is in the room 1, the four signals are 1, 0, 0, 0. In
the 1-room environment, all the signals are 0. The
number of the total external input signals is 81+4=85 as
can be seen in Fig. 4.

The executable primitive actions are “going up”,
“right”, “down”, and “left”. The output layer of the
network has 4 units, each of which represents the Q
value for the corresponding action. The state transition
is deterministic. If the agent hits against a wall, it stays
at the same square. -greedy is employed for the random
exploration, and the value of is 0.1. The discount
factor is 0.92. The neural network has three layers and
the hidden layer has 30 hidden neurons.

At first, the agent learned deterministic exploration
in a 5x5 small grid world where two landmarks of goal
exist and one of them is the real goal. The task is called
1-room task here. Fig. 2 shows an example of the robot
exploration behavior after the first learning. It can be
seen that the robot went to one of the two landmarks at
first, and then went to the other after it arrived at the
first one and knew that it was not the real goal.

After that, the learning moves to the second stage.
The agent is put on a random square in the 4-room
world as shown in Fig. 5 that is similar to the 4-room
task in [4]. In this world, there are four small rooms

Qup
Qright

Qdown
Qleft

visual sensor

room1
room2

room3
room4

indicate which room the agent is in now

9x9=81

Fig. 4 An Elman network and its input and output

signals in the simulation.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��
��
��

G G

G

G

G

G

G G

GOAL

A

room 1 room 2

room 3 room 4
Fig. 5 4-room environment. There are four rooms and

each of them has two doorways to the next room.
When the agent arrives at the door (G), it is
moved immediately to the next room. The
configuration of the door changes at every some
thousands of trials, but the real goal is always
located between the room 2 and the room 3.

whose size is 5x5. The size of each room is identical to
the 1-room task. The rooms are allocated as shown in
Fig. 5, and are connected to the next room by a doorway.
Each room has two doorways, and the doorway location
is randomly chosen. A landmark is located just in front
of each doorway, but the agent can observe the
landmarks only in the room where the agent is now in
even though the visual field reaches a landmark in
another room. By using the visual sensor consisting of
9x9=81 visual cells, the agent can observe both
landmarks wherever the agent is in the room. When the
agent arrives at the square where a landmark exists, it is
moved immediately to the square located at the opposite
side of the doorway in the next room. When the agent
arrives at the goal, it gets a reward and the trial finishes.
The agent is put randomly on one of the squares in the
world again and a new trial begins. The real goal is
always located at the wall between the room 2 and room
3. In the 1-room task, the agent is required to keep the
context information representing whether the agent
already arrived at one of the landmark or not. In the
4-room task, the agent is not required to keep any
context information, even though the size of the
environment is larger than the 1-room task. This means
that the agent can learn a solution using a regular
feedforward neural network.

4.2 Results

Fig. 6 shows the learning curves when the door
configuration is fixed. The vertical axis indicates the
average number of steps to the goal. If the agent does
not reach the goal within 2,000 steps, the trial is cut off.
One plot is for the case of the agent after the learning of
1-room task and the other is the case when no learning
had been done beforehand. For reference, the case that
the action selection is always optimal except for the
random action that appears with =10% probability and
the case when the action selection is completely random
are also plotted in the same graph. Each plot is the
average over every 10 trials until the 100th trial, and the
average over every 50 trials after the 100th trial. That is
the reason why the value seems fluctuate more until
100th trials. Note that the vertical axis is magnified

after 2,000th trial. The data is the average over 5 cases
of initial weight set and over 30 door configurations for
each initial weight set.

At the beginning of the learning, it can be seen
that the agent that had not learned beforehand took
around 100steps in average, but the agent after the prior
learning took less than 30 steps. Even around the
5000th trial of learning, the performance is still different
between them. The result indicates that the first
learning accelerates the second learning.

In order to know how the learning is accelerated,
the agent’s trajectory at the first trial for each case is
observed. Fig. 7 shows the first exploration behavior
just after the agent finished the first learning and was
put onto the 4-room world. The agent went for one of
the landmarks at first without doing meaningless actions.
After the agent was moved to the room 1, it moves
toward the other landmark in the room. It can be said
that the agent is able to search the goal so effectively
utilizing the knowledge obtained through its past
experiences even though some redundant actions were

learning from scratch

after the 1st learning

ε-optimal

Number of trials

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 t
o

th
e

go
al

random action

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

11

10

9

8

7

6

5

learning from scratch

after the 1st learning

Fig. 6 Comparison of the learning curve with respect to

whether the learning of the 1-room task had been
done beforehand or not.

���
���
���
���

G

GOAL

Room 2Room 1

Room 3Room 4

start

25steps

 A

Fig. 7 The exploration behavior just after the agent who

has already learned in 1-room environment was
put onto the 4-room world.

�����
�����
�����
�����
�����

G

Room 2
start

121steps

Go to
the room 1 G

Fig. 8 The exploration behavior just after the agent who

has not learned before was put onto the 4-room
world. The agent was learning while moving.
Light-colored arrows indicate non-greedy actions.

still taken such as the repetition of the move between
the room1 and room 2. The result may be considered as
a phenomenon within the range only to be expected, but
it is important to show that even though the
environment is similar to the previous one, obtained
knowledge can be effectively utilized in another task
without teaching definitely what knowledge is useful.

On the other hand, the exploration behavior of the
agent without learning the first task is shown in Fig. 8.
In this figure, the agent did not act randomly, but took
the same path some times. The reason might be that at
the first action in the first trial, all the Q values are 0.4,
and as long as the agent did not arrive at the target, the
Q value for the action is decreased. It is difficult to say
how the Q value changes through learning because a
recurrent neural network is used as a function
approximator. However, it is supposed that chosen
action changes periodically by the modification of the
bias value in each output unit, and it is not easy to
discriminate the different states for the network at the
early stage of learning. Therefore, the agent took the
same loop several times, such as square loop at the
upper-right area. That can be thought as a kind of the
effect of the “optimistic initial value”[1].

In the next simulation, the configuration of the
doors changes at every 3,000 trials. The location of a
door is chosen randomly at each wall between two
adjacent rooms except for the configuration in which
two landmarks are put on the same square. The goal
location exists always between the room 2 and room 3.
Fig. 9 or 10 shows the change of the learning curve
according to the number of experiences of different door
configuration for each of the cases of prior learning and
non-prior learning respectively. Furthermore, each
learning curve is average over 5 simulation runs with
different initial connection weight set. Note that the
scale of the vertical axis is different between Fig. 9 and
Fig. 10.

It can be seen that in both cases, learning becomes
faster according to the number of experienced
configurations. It can be said that the agent obtained a
strategy to respond appropriately to various
configurations of doors and to go to the goal between
the room 2 and 3 through the learning for many
configurations. By comparing the two cases, it can be
said that the previous learning accelerates such
over-configuration learning. However, if the goal
location changes as well as the configuration of doors,
learning often failed. In this case, the agent sometimes
has to move the opposite direction even though the
configuration of doors and the agent location are both
completely the same as one past state, and the
knowledge obtained through the past learning might be
broken. If we are in the same situation, we can learn the
solution effectively. This can be a future issue.

From these results, the deterministic exploration
obtained by the learning in the past experiences relates
deeply to the temporal abstraction, and there is a
possibility that this approach can be a solution for the
discovery problem of temporal abstraction.

Finally, it is examined how much part of the
knowledge obtained in the first learning is broken
through the second learning, and also how the
knowledge obtained in the 4-room task is useful in the
1-room task. In the 4-room task, although the
environment is larger than the 1-room task, context
information is not necessary to know the optimal path.
Then the learning performance when the agent is
returned to the 1-room environment is observed. Fig.
11 shows the learning curve for three cases. In one case,
the agent has already learned the 1-room environment at
first and then the 4-rooms environment. In another case,
the agent has already learned only in the 4-room
environment. In the other case, the agent learns in the
1-room environment without any previous learning.

10

1st conf.
2nd-5th conf.
6th-10th conf.
11th-30th conf. 31th-60h conf.
61th-100th conf.

optimal but with random factors

6

8

20

30

Number of trials

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 t
o

th
e

go
al

 (
lo

g)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 9 Comparison of the learning curves with respect to

the number of experienced door-configurations
when the agent had already learned 1-room
environment. As for the label of each line, “2nd –
5th conf.”, for example, means that the average
learning curve from the second configuration to
the fifth configuration.

Number of trials

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 t
o

th
e

go
al

 (
lo

g)

1st conf.

2nd-5th conf.

6th-10th conf.

11th-30th conf.

31th-60h conf.
61th-100th conf.

optimal but with random factors

6

8

20

30

10

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 10 Comparison of the learning curves with respect

to the number of experienced door-configurations
when the agent had not learned anything before.

At the early phase of the learning, the agent after
the learning in the both environments can reach the real
goal in the smallest number of steps in average, and
even for the agent after only the learning in 4-room
environment, the average steps to the real goal is
smaller than the agent after no learning. Two possible
reasons can be thought. One reason is that the agent
learned to go to one of the landmarks and that helps the
learning faster. The other reason is that the agent
learned to go to the other landmark after it reaches one
of the landmarks even though the 4-room task itself
does not required such context-based behavior.

In order to know the reason, the agent behavior is
just observed on a configuration of the landmarks that
did not appear in the 4-room environment without
learning in this environment. As shown in Fig. 12, it is
surprising that the agent went to one of the landmarks
and after reaching it, the agent went to the other
landmark. The same behavior can be observed in
another simulation run with a different initial weight set.
Although more investigation is necessary, the author
think that it is more likely that such behavior is obtained
through the previous learning, because the task itself
does not require context-based actions, but the
context-based action realizes effective exploration.

5. CONCLUSION

A novel idea that deterministic exploration
behavior obtained through learning can be considered as
temporal abstract actions was introduced. It was
actually shown in some simulations that the
deterministic exploration behavior obtained through the
learning of a task accelerates the learning of another
similar task. A recurrent neural network was used for
the learning, but the knowledge obtained in the first task
was not destroyed completely but was used effectively
in the second task even though the agent often failed a
more difficult task. When the agent was returned to the
first task, the learning was faster than the learning from
scratch. Furthermore, context-based exploration
behavior was acquired through the learning of a task
that did not require such behavior. The detailed
investigation should be done in the future.

ACKNOWLEDGEMENT
This research was supported by JSPS Grant in Aid

in Scientific Research (B) #14350227and #15300064,
and also MEXT Overseas Advanced Education and
Research Application Assistance Program. I would like
to say thank to Prof. R. S. Sutton at Univ. of Alberta,
Canada for useful comments.

REFERENCES
[1] Dietterich, T. G., “Hierarchical reinforcement

learning with the MAXQ value function
decomposition”, Proc. of ICML'98, 1998.

[2] McGovern, A., and Barto, A.G, “Automatic
Discovery of Subgoals in Reinforcement Learning
Using Diverse Density”. Proc. of the ICML’01, pp.
361-368, 2001.

[3] Stolle, M., “Automated discovery of options in
reinforcement learning”, Master's thesis, McGill
University, 2004.

[4] Sutton, R.S., Precup, D., Singh, S., “Between MDPs
and semi-MDPs: A Framework for Temporal
Abstraction in Reinforcement Learning”, Artificial
Intelligence, Vol. 112, pp.181-211, 1999

[5] Sutton, R.S., Barto, A.G., “Reinforcement Learning:
An Introduction”, MIT Press, Cambridge, MA, 1998

[6] Shibata, K., “Acquisition of Deterministic
Exploration Behavior by Reinforcement Learning”,
Proc. of the 11th AROB (CD-ROM), 2006

[7] Shibata, K., “Learning of Exploration Behavior by
Reinforcement Learning”, Proc. of SICE SSI 2005,
pp. 11-16, 2005 (in Japanese)

[8] Shibata, K., “Spatial Abstraction and Knowledge
Transfer in Reinforcement Learning Using a
Multi-Layer Neural Network”, Proc. of ICDL5
(CD-ROM), 2006

[9] Rumelhart, D.E, Hinton, G.E., and Williams, R.J.,
“Learning Internal Representations by Error
Propagation”, Parallel Distributed Processing, The
MIT Press, pp. 318-362, 1986

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000
Number of trials

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 to
 th

e
go

al

1-room only

1-room 4-room 1-room

4-room 1-room

Fig. 11 Learning curve when the agent is returned to the

1-room environment after the learning in the
4-room env. and the comparison to the references.

�����
�����
�����
�����
�����

G
13steps

G

A

Fig. 12 An example of the agent behavior after only the

learning in 4-room environment where
context-based actions are not required. The agent
did not learn, and just the behavior is observed.

