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Abstract—The authors have propounded that various functions
emerge purposively and harmoniously through reinforcement
learning with a neural network. In this paper, emergence of
deterministic ”exploration” behavior, which is different from the
stochastic exploration and needs higher intelligence, is focused
on. In order to realize the intelligent exploration behaviors,
it becomes a key point whether the recurrent neural network
memorizes necessary information and utilizes it to generate
appropriate actions. In the simulation of 3 × 3 grid world with
an invisible goal task, by introducing a recurrent neural network
for Q-learning, an agent can represent more accurate Q-values
considering the past experiences, and that is suggested to enable
to learn appropriate actions. The acquired knowledge can be
generalized in some unknown environment to some extent. In
another task in a simple environment with a random-located
branch, it is also shown that the recurrent neural network
cleverly memorizes and keeps the branch position to represent
accurate Q-values after learning.

Keywords—reinforcement learning; recurrent neural network;
deterministic exploration; memory; function emergence.

I. INTRODUCTION

Although the intelligence of modern intelligent robots has
been growing, it has to be said that the flexibility in the robots
is still far poorer than that in humans. When we see the
processing system for both, it is easily known that our brain
is massively parallel and cohesively flexible, while the robot’s
process usually consists of a series of functional modules
developed by humans as a designer. Unlike recognition or con-
trol, higher functions usually do not have direct connections
from sensors or to actuators, and so it is difficult even to decide
the inputs or outputs. If they are given in advance, the flexibil-
ity will be lost. From these views, the authors have thought that
to develop human-like flexibility or intelligence in robots, the
architecture and learning should be inspired more by humans.
Therefore, the authors have propounded that various functions
emerge purposively and harmoniously through reinforcement
learning with a neural network, and have investigated whether
each of the functions actually emerges or not. One of such
functions is ”deterministic exploration” [1][2][3].

In reinforcement learning research field, ”exploration” gen-
erally means stochastic action selection using random num-
bers. However, human exploration seems to be highly strategic
and to need higher intelligence. For efficient learning, active
exploration considering the past experience such as the number
of occurrences of each state has been investigated since a long

time before [4][5]. However, there are no works in which the
acquisition of exploration strategy through learning is aimed,
as far as the authors know.

When we are looking for a lost key, we don’t act randomly,
but act very strategic. We may check the places where we
think the key is highly possible to exist and/or close to us. For
such strategic exploration, many things should be considered
in parallel including the present situation and past trace.
The authors think that such intelligent exploration should be
acquired through learning. Inspired by the big gap between
the human exploration and that in reinforcement learning,
the authors have explored the possibility of emergence of
intelligent exploration through reinforcement learning with
a recurrent neural network, and have shown some strategic
exploration behaviors emerge [1][2][3].

In order to realize intelligent exploration, it becomes a
key point that how the recurrent neural network memorizes
necessary information and utilizes it to generate appropriate
exploration behaviors. In [1], an agent learns exploration
behaviors in a grid-world environment where there are two
landmarks of goal that are located randomly at each episode
and one of them is a real goal and the other is a fake. The
agent acquires the exploration behavior; going to one of the
landmarks at first, and if it is not the real goal, going to the
other one. Furthermore, in the recurrent neural network after
learning, it is observed that a neuron represents whether one
of the landmarks has been visited already or not.

Then, in this paper, a more confusing task is introduced,
and acquired exploration behaviors are shown. Furthermore,
from the viewpoint of purposive memory, it is shown that the
learning to realize more precise value function enables the
agent to memorize the branch position that changes randomly
at the beginning of each episode.

In many works, a recurrent neural network is used in
reinforcement learning, and it has been shown that mem-
orization of necessary information emerges [6][7][8][9][10].
However, in most of them, memorized information takes a
binary value, such as the direction of an arrow that is used to
choose a way to go at the branch place appeared after some
while. In [9][10], memorization of predicted useful non-binary
information and relay of the information among a couple of
hidden neurons were shown. As well as [9][10], this paper also
has a purpose to show the ability to memorize necessary non-
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Fig. 1. Learning system consisted of one Elman-type recurrent neural
network and its inputs and outputs.

binary information through reinforcement learning without
providing any knowledge about which information is valuable
to be memorized.

II. LEARNING SYSTEM

The learning system is quite simple. As shown in Fig. 1,
there is one recurrent neural network, and perceptual signals
of an agent are the input of the network. The recurrent network
here is a popular 3-layer Elman network whose hidden outputs
are fed back as a part of the input at the next time step. In this
paper, since a discrete space task is employed, Q-learning [11]
is used as a reinforcement learning algorithm. The number of
outputs of the recurrent network is the same as the number of
possible actions for the agent. The outputs of the network are
used as Q-values after linear transformation. Here, the output
function of each neuron is the sigmoid function with the value
range from -0.5 to 0.5. When an output is used as the Q-
value for the corresponding action, 0.4 is added, while the
ideal Q-value is used actually as a training signal after 0.4
is subtracted. Boltzmann selection [12] is used as an action
selection. Only the output corresponding to the executed action
at is trained using the training signal Tat,t generated based on
Q-learning as

Tat,t = rt+1 + γ max
a′

Qa′(St+1) (1)

where r indicates a reward, γ indicates a discount factor,
Qa indicates the Q-value for the action a, and S is the
input vector of the network. The network is trained by BPTT
(Back Propagation Through Time) [13] supervised learning
algorithm. Note that the system and learning are very general
without any special techniques for learning of exploration.

III. SIMULATION

Here, discrete grid world tasks are employed. At first, the
learning results in a 3×3 maze task is introduced. In this task,
since the agent can change its direction by a “turn” action,

the environment is more confusable for the agent than the
3 × 3 maze task in the previous work in which the agent
direction was not considered [1]. After that, to investigate the
acquisition of memory function, another simple environment
that has always only one branch position is prepared.

A. Task Setting

In 3×3 maze problem, 9 squares are arranged in the shape of
3×3 as shown in Fig. 2. At each episode, an agent always starts
from the center square. The goal state is randomly located
on one of the squares except the center, and is fixed during
one episode. Except for the 12 walls that form the boundary
between the 3 × 3 world and the outer world, 4 walls are
allocated randomly at each episode on the condition that the
agent can visit all the squares from the center square that
is the start location. There are 192 wall allocation patterns,
and 1536 combinations when both wall and goal allocations
are considered. The agent can perceive only local information,
that is whether a wall exists or not in each of “forward”, “left”
and “right” directions of the agent. Possible actions of the
agent are “move forward”, “turn left”, “turn right”, and “turn
around”. The state transition is deterministic. The important
setting is that the agent has no way to know where the goal is
located, and so the agent has to explore to find the goal. If the
agent reaches the goal state, it gets a reward, and the episode
terminates. No penalty is imposed even when it collides a wall.

The input signals include 3 signals from a wall sensor
and each of them represents the existence of a wall at the
corresponding direction. The input signals also include 4
signals to represent the previously executed action. Each input
takes a binary value. For the agent, the Q-value becomes larger
for the state and action when it reaches the goal state in smaller
number of steps, and so the agent learns to reach the goal
as early as possible. In other words, the agent learns to find
invisible goal state effectively considering the context using
the recurrent neural network.

The other parameter settings are seen in Table I. Stable and
efficient error propagation is expected by the special connec-
tion weights for the feedback connections. Since learning is
more stable in the branch task, the learning rate is larger to
get more accurate Q-values.

B. 3 × 3 maze problem

At first, a 3 × 3 maze problem is learned. Figure 3 shows
the learning curve. The average number of steps to the goal
during learning is plotted at every 1,000 episodes. It should
be noted that the number is also influenced by the random
factor in Boltzmann selection where the temperature is reduced
gradually during learning.

Figure 2 shows the agent behaviors after learning for sample
3 wall allocations. The agent initially faces the left direction.
In these cases, the goal was not allocated until the agent visited
the last square. Figure 4 shows the change of the maximum
Q-value at each step for the cases of Fig. 2. The line with
no plots indicates the ideal Q-value. Since it is difficult to
calculate the ideal value for all the states, the line is drawn



TABLE I
PARAMETER SETTINGS

Number of episodes 500,000
The maximum number of steps when the
agent cannot reach the goal

250

Temperature in Boltzmann selection 0.05 → 0.0025
Discount factor γ 0.92
Reward r at the goal state 0.8
Number of external inputs 7
Number of hidden neurons 40
Number of outputs 4
Initial output of each hidden neuron at each
episode

0.0

Truncated propagation step in BPTT 30
Initial Connection Weight

Hidden → output 0.0
External output → hidden random from -0.5 to 0.5
Self feedback 4.0
Other feedback 0.0

Learning rate
For Feedback connections (3 × 3 task) 0.1 → 0.05
For other connections (3 × 3 task) 0.2 → 0.1
For all connections (branch task) 0.5 → 0.25
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Fig. 2. Simulation environments and agent’s behaviors after learning for the
cases of sample three wall allocations. The wall allocation is randomly chosen
at the beginning of each episode under the condition that the agent can visit
all the squares. The small numbers indicate what number of step the action
is in the episode.
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Fig. 3. Learning curve in the 3 × 3 maze task. Since the curve includes
the influence of random exploration, the performance change only by the
exploration factor is plotted by using the connection weights after learning to
see the effect of learning.

only at the steps close to the final step. It is seen that the
Q-value is quite similar to the ideal value in all the three
cases. In the environment 1, although the agent cannot get a
reward when it turns the direction, the agent can reach the
last square with no turnaround. Therefore, the possibility that
the next square is the goal becomes larger gradually; it is
1/8 = 12.5% at first, and 100% when the agent visits the
last square. It is seen that the actual Q-value after learning
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Fig. 4. Change of the maximum Q-value in one episode after learning for
the 3 cases in Fig. 2. The line with no plot marker indicates the ideal Q-value.
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Fig. 5. Comparison of the Q-value change in the case of the environment
2 between the cases of an Elman network and a non-recurrent feedforward
network.

increases almost monotonously and finally it reaches around
0.8 that is the reward value. In the environment 2, the agent has
to turn around at one end of the path, and during some steps
after the turn, it has to passes 4 squares with no possibility
of the goal existence before it reaches the next square with
a possibility of the goal. Therefore, the Q-value increases at



first, but it decreases suddenly at the 8th step, and it increases
again.

In the environment 3, at the center square, the agent can
choose one among 4 moving directions. Because the change
of direction spends one more step, the agent, in the optimal
path, should go straight when it returns to the center square
for the first time, change its direction for the second time, and
go straight for the third time. However, the agent took the path
as shown in Fig. 2 (c). It takes 27 steps, while 25 steps in the
case of the optimal path. The maximum number of steps to
visit all the 9 states when the wall allocation is varied is 28,
while 26 steps in the case of the optimal path.

10 simulation runs with a different random sequence for
initial connection weights and random exploration are per-
formed. There is no case in which the agent can always take
the optimal action. In 2 of the 10 runs including the above
result, the maximum number of steps is 28. In 5 of the 10
runs, the maximum number of steps is less than 40. In 1 of
the 10 runs, the maximum number of steps is more than 100,
but less than 1000.

When a non-recurrent regular 3-layer neural network is
used, in all of 10 simulation runs with a different random
sequence, the agent falls into the infinite loop in the envi-
ronment 3 after learning. In fact, for all the cases of wall
allocation, the agent must be able to take non-optimal but
appropriate path without using any memories, which we call
”wall following”. It might occur that inaccurate Q-values due
to the state confusion disturb to choose appropriate actions.

Figure 5 shows the change of all the Q-values in one episode
in the environment 2 for both recurrent and non-recurrent
neural network cases. It is seen that in both cases, the action
selection is appropriate, but in the case of non-recurrent neural
network, the Q-values do not increase as time goes by. In
contrast, in the case of recurrent neural network, the change of
Q-value seems to consider the possibility that a goal appears.
When the agent visits the last 9th square, it is always the goal
state and gets the reward 0.8. It is interesting that the agent
seems to know the visit of the final 9th square even though
the agent perceives only wall assignment around it and the
previous action.

C. Behaviors in Some Unknown Environments

Next, the agent after learning of 3 × 3 maze was put
on some unknown environments, and the agent’s behaviors
were observed to examine how the acquired knowledge is
generalized to unexpected environments. At first, the agent
was put on the environment where 9 squares are arranged in
a row. The agent behavior when it was located initially at the
second square from the left end is shown in Fig. 6, and the
change of Q-value for the chosen action is shown in Fig. 7.

It is seen that the agent goes straight to the right end of
the row, turns around at the end, and then goes straight again
until it reaches the unvisited square at the left end of the row.
The Q-value tends to increase at first, and when it reaches the
right end, the Q-value decreases suddenly. After that, the Q-
value increases again until it reaches the last unvisited square.
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Fig. 6. The agent behavior in the environment where 9 squares are allocated
in a row. The agent has not experienced the environment during learning.
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Fig. 7. Change of the maximum Q-value in one episode after learning for
the environment in Fig. 6.
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Although the Q-value does not reach 0.8, but the trend of the
change seems rational because at the right end, the goal will
not appear for some steps. It is also rational that the decrease
of Q-value is larger than that in the environment 2, as shown
in Fig. 4(b). In the environment 2, when the agent goes to the
bottom-right square, the possibility that the square is the goal
is 20%, while in this case, the possibility is 50% because only
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learning.
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Fig. 11. Change of the maximum Q-value in one episode after learning for
the environment in Fig. 10.

one square remains at the left end if the right end square is
not the goal.

Then, to examine whether or not the decrease of Q-value
at the right end considers the past state transition even in an
unknown environment, the decrease of Q-value is observed
when the initial location of the agent changes. Figure 8 shows
the change of Q-value for the 7 cases of the initial agent
locations. In all the cases, the Q-value decreases at the right
end, and increases after that. Figure 9 shows the decrease
of Q-value as a function of the initial agent x position. It
is seen that the decrease of Q-value decreases as the initial
location is closer to the right end. If the initial location is
closer to the right end, the possibility of the goal at the right
end decreases, and the number of steps to reach the next square
with a possibility of goal from the right end also decreases.
Accordingly, it seems that the agent considers the past state
transition to evaluate its present situation.

Secondly, 9 squares are arranged in a zigzag manner as
shown in Fig. 10. The behavior that the agent takes when it
starts from the square at (0, 1) with the direction ”right” is
also shown in Fig. 10. The change of the maximum Q-value
in one episode for that case is shown in Fig. 11. In this figure,
the change of Q-value when the agent starts from the square
at (3, 4) with the direction of ”down” is also plotted.

The agent behavior is appropriate. The decrease of Q-value
at the upper-right end is smaller than expected, but the Q-
value increases gradually before and after the turnaround.
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Fig. 12. Simulation environment with a random branch and the agent’s
behaviors after learning.

Particularly, the way of increase is interesting. Before the
turnaround at the upper-right end, when the agent visits a new
square, there is a possibility that the square is the goal state, but
when it selects the ”turn right” action, there is no possibility
of the goal state. If the agent knows that, the Q-value for the
action to go to a square with a possibility of goal is large, and
the Q-value becomes smaller after it reaches the square but
no reward. That matches the actual Q-value change with up
and down before the turnaround as shown in Fig. 11. On the
other hand, after the turnaround, for any actions, there is no
possibility of goals for some time steps because the squares
have been visited already. The Q-value is expected to increase
monotonously towards the final goal. That also matches the
actual change in Q-value after the turnaround even though
unexpected up and down appears after the 22nd step. It seems
that the agent knows that the goal does not appear for some
while after the turnaround at the upper-right end.

When the agent starts from the square at (3, 4), the inputs of
the neural network before the turnaround are the same as those
after the turnaround when the agent starts from the square
at (0, 1). In the same way, the inputs before the turnaround
when it starts from the square at (0, 1) are the same as those
after turnaround when it starts from the square at (3, 4).
Nevertheless, before the turnaround, the Q-value increases
with up and down, and while after the turn, it increases
monotonously in both cases. The same test is executed in the
other simulation run in which the performance in 3× 3 maze
environment is better, a similar tendency is observed, although
it is not so clear as this result.

D. Branch-position memorization task

In order to investigate the acquisition of memory function
more, the agent learned in a more simple environment as
shown in Fig. 12. In this environment, there are a row of
8 squares and one branch square. The agent starts from the
left-end square facing the up direction, and the location of the
branch is chosen randomly at each episode between the 2nd
and 7th squares, as shown in Fig. 12. The goal state is located
randomly on one of the squares except for the left end square.
All the parameters are the same as in the previous task except
for the learning rate. The learning rate is larger because the
learning is more stable and precise Q-value is required to show
the acquisition of memory function clearly.

Figure 12 also shows the agent behavior when the branch
is located at x = 2. At the first glance, the optimal agent
behavior seems visiting the branch square at first, but to visit
the branch, many turns are needed to change the agent’s
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Fig. 16. Comparison of the output change due to the difference of the branch location in some hidden neurons.
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Fig. 13. Change of Q-values for all the actions for two cases of branch
positions in the branch task.

direction. Accordingly, in the case of discount factor γ = 0.92,
the optimal path from the viewpoint of cumulative discounted
rewards is to go straight at first, and if the goal exists on the
branch square, it turns around at the right end not depending
on the branch location.

Figures 13 shows the change of all the Q-values after
learning when the branch exists at x = 2 or x = 7 respectively.
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After turning right at the initial location, the Q-value for
“moving forward” is the maximum until it reaches the right
end of the row. At the 9th step, at the right end, the Q-value
for the forward motion is decreased, but after that, it increases
before the branch comes again. At the branch, the Q-value for
”turn right” becomes maximum, and the Q-value for the final



action is almost 0.8.
Figure 14 shows the change of Q-value of the chosen

action for the 6 cases of branch location. Figure 15 shows
the ideal Q-value change also for the 6 cases. It is seen that
the actual Q-value change is quite similar to the ideal one.
If the agent does not reach the goal before reaching the right
end of the environment, the Q-value decreases once at the
9th step. However, it is interesting that the Q-value at the 9th
step is larger as the branch position is closer to the right-end
although the present external inputs are completely the same.
This means that the agent learned to memorize the branch
position in the recurrent neural network and to reflect it to
the Q-value. In this case, just to realize the optimal actions,
no memory is necessary. Actually, with a non-recurrent neural
network, the optimal behaviors can be achieved in this task.
This means that the branch position is memorized to obtain
precise Q-values.

When the 40 hidden neurons are observes, some neurons
that seems to contribute the memory of the branch location
were found. Figure 16 shows some examples. The hidden 1
(a) and hidden 24 (b) neurons responds to the branch location,
but they becomes almost a same value when it reaches the
right end at the 9th step. The hidden 3 (c) and hidden 29 (d)
neurons seem to keep the values for a while. In the hidden
22 (e) and hidden 11 (f) neurons, the difference of the output
at the branch is not so large, but at the right-end, the outputs
represent the branch location. Before learning, the agent did
not know that memorization of branch location is necessary
to calculate accurate Q-values. It also does not know how
the branch location is memorized and how the memorized
information is reflected to the Q-values. However, the agent
autonomously learns to memorize the branch location and to
reflect it to the Q-values.

IV. CONCLUSION

In the deterministic exploration task with invisible goal
state, the agent acquired appropriate behaviors through rein-
forcement learning with a recurrent neural network though
the optimal behavior cannot be obtained. The Q-values after
learning was similar to the ideal one that cannot be obtained
with a non-recurrent feedforward neural network. The agent
after learning seems to understand that after the turnaround at
the end of the environment, the goal state does not appear for
some steps even in some unknown environments. Furthermore,
it was also shown that the memorization of necessary non-
binary information such as the branch location emerges in
the recurrent neural network to output accurate Q-values only
through the learning from rewards.
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