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ABSTRACT

This paper shows that the robot with hand-eye system
can learn the hand-reaching task without apparent cal-
culations of the target, obstacle, and hand locations.
This system consists of a neural network whose inputs
are raw visual sensory signals, joint angles of the arm,
and the existence of the obstacle. It is trained by rein-
forcement learning, and the reward is given only when
the hand reaches the target that can be found only
on the visual sensor. In order to show the e�ective-
ness of this learning, the following three assumptions
are introduced. (1) The target, obstacle, and hand
cannot be distinguished on the vision. (2) The hand
disappears out of the visual �eld. (3) The obstacle ap-
pears randomly but the location is always the same.
The initial hand location and the target location are
chosen randomly at each trial. After the learning, the
robot could become to reach its hand to the target. By
the analysis of the hidden neurons' representation after
the reinforcement learning, it was known that the tar-
get location was not represented independently from
the hand location, either on the work (visual sensory)
space or on the joint space. Furthermore, the repre-
sentation of the hand location is acquired by mixing
the joint angles and visual signals.
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1 INTRODUCTION

Reinforcement learning is focused recently by its au-
tonomous and adaptive learning property. When we
utilize it in robot control, it is the general way that
we �rst design the state space that is calculated from
its sensory signals, and then the appropriate mapping
from the state space to the motion space is trained[1].
On the other hand, it has been proposed that the neu-
ral network is utilized in reinforcement learning to re-
alize the continuous and non-linear mapping [2].

The authors have proposed that the sensory sig-
nals, those are often the outputs of the sensory cells
with a local receptive �eld, are put into the neural
network directly. It has been called direct-vision-based
reinforcement learning. This results in the stability of
the learning[3] and acquisition of the continuous and
adaptive state space as the internal representation in
the hidden layer[4].

Here the hand-reaching task is taken up as shown
in Fig. 1, in which the acquisition of the hand-eye co-
ordination is required. When we reach our hand to
some object, we are rarely conscious of the hand even
if it exists in our visual �eld. However, it was reported
that the monkey, who had been restricted to see its
hand for 34 days after its birth, was absorbed in look-
ing its hand and could not reach its hand to some small
object when it saw its hand for the �rst time[5]. This
experiment shows that the hand-eye coordination can
be acquired by learning after its birth. The reduction
of the consciousness through experiences may suggest
us to deny that the monkey calculates its hand posi-
tion apparently and excludes its image from the visual
sensory signals. There may be more direct mapping
from vision to motion.

There are many works concerning to the hand-
eye coordination to realize the visual feedback control.
J�agersand et al. have claimed the advantages of their
work as (1)no prior models of the transfer function
from visual perceptions to the robot angles, (2)estima-
tion of the model (visual motor Jacobian) through the
iteration of the reaching tasks with no extra learning
steps or movements[6]. Even in their work, the clip-
ping out the hand and target locations from the visual
image are dealt with as a premise. Although the task
adopted here is toy problem with no redundant degree
of freedom, but we propose the method for the hand-
eye system to learn the reaching without apparent cal-
culations of the target, obstacle and hand location. In
order to emphasize the advantage of the method, we
adopt the three assumptions that may not be natural
in actual. The target, obstacle and hand cannot be dis-
tinguished on the vision. The hand can disappear out
of the visual �eld depending on the joint angles. The
obstacle appears randomly, but the location is always
the same.

2 Task Setting

Here the setting of the task as shown in Fig. 1 is de-
scribed. The visual sensor has 5 � 5 = 25 cells and
the output of each cell is the area ratio occupied by
the target, obstacle or the robot's hand against its re-
ceptive �eld. Below here, the left-bottom corner of the
visual sensor is supposed to be the origin. The size
of each visual cell is 1 � 1, and the size of the target,
obstacle and hand is also the same. So these three
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Figure 1: The robot hand-reaching task employed in
this paper

cannot be distinguished with each other on the vision.
The target is located randomly in the range where the
whole target can be caught in the visual �eld. In other
words, the center of the target is chosen randomly in
the range of 0:5 � x � 4:5, 0:5 � y � 4:5. The base of
arm is �xed at (-2.0, 0.0), and the initial hand location
is chosen randomly in the range of �1:99 � x � 6:01,
�1:99 � y � 6:01 except for the range where the arm
cannot reach. The obstacle appears randomly at the
constant location with the probability 0.5, but when
the obstacle does not exist, the hand or target can be
located at the location. The target and obstacle are
not moved during one trial. The length of each link of
the arm is 5. Each joint angle is limited from 0.0 to
�. So there is one-to-one corresponding between the
joint angle vector to hand location vector except for
the hand location (-2.0, 0.0). These two joint angles
are supposed to be observed directly. The inputs of
the robot are visual signals, joint angles, and the bi-
nary value that indicates the existence of the obstacle
(0: not exist, 1: exist). The total number of inputs is
28. There are two outputs which represent the joint
angular velocities, and two joints are moved according
to them. When the hand touches the target, the re-

ward is given, and when the hand touches the obstacle
or the joint angle go over its limit, the small penalty
is given. More details of the task are described in the
section 5.

There are two technically interesting points. The
�rst one is whether the coordination between visual
sensory signals and joint angles of the arm can be ac-
quired only by the reinforcement learning, especially in
the case of raw visual sensory inputs. The second one
is how the target information is clipped out and repre-
sented on the hidden layer. In order to know the target
location from the visual sensory signals, it is required
in this task that the information of the hand and obsta-
cle is removed and only the information of the target is
clipped out from the whole visual sensory signals. In
this task, no prior information about the target, ob-
stacle and hand is supposed to be obtained. When we
are going to pre-process the visual sensory signals be-
fore the reinforcement learning, we have to know some
information about this task in advance. That is be-
cause even if the locations of three objects are calcu-
lated from the visual sensory signals, the robot cannot
know which is the target location. Of course, if the
relation between the hand location and joint angles is
known and it is known that the obstacle location is al-
ways the same, the target location can be known easily.
However, the reinforcement learning is useful when the
information about the given task is not enough. This
indicates that the pre-processing does not �t for the
autonomous and adaptive ability of the reinforcement
learning. On the other hand, the direct-vision-based
reinforcement learning promotes the exibility of the
system.

3 LEARNING OF CLIPPING

In order to show the basic ability of the neural net-
work dealing with both the visual sensory signals and
the other signals, the supervised learning which real-
izes the clipping of the target object information is
executed here. The setting is almost the same as de-
scribed in the last section. But the two outputs are
trained to output the target location x; y respectively
by Back Propagation, and the hand is located ran-
domly at each time step. The number of hidden units
of the neural network is 20. The overlap of the target
and hand is allowed, but the obstacle is not allowed to
be overlapped with the target or hand.

Fig. 2 shows the outputs as function of the target
location x; y respectively. In each graph, 100 outputs
chosen randomly are plotted. Even if the hand loca-
tion and the existence of the obstacle were varied, and
sometimes the hand disappeared, and sometimes the
target overlapped with the hand, the outputs became
close to the training signals which are drawn as the
straight lines. It is known that the neural network can
learn this clipping, even if it seems di�cult at a glance.
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Figure 2: The results of clipping the target information
from the visual signals by supervised learning.

4 REINFORCEMENT LEARNING

In this section, the reinforcement learning architec-
ture and algorithm employed in this paper is intro-
duced. The basic architecture is the Actor-Critic
architecture[7], but there is only one layered neural
network. The outputs are divided into two types, a
value function output and some motion signal outputs
(see Fig. 3 for reference). The reason of only one net-
work is that the hidden units can be shared adaptively
between the value function and the motion signals ac-
cording to their necessity, and if their necessary knowl-
edge has a common part, it can be shared by utilizing
the same hidden units.

The algorithm is Temporal-Smoothing (TS) based
reinforcement learning. This is very similar to Tem-
poral Di�erence (TD) based reinforcement learning[7],
and only the di�erence is the curve of value function
along time axis becomes straight line or exponential
curve. In TS based learning, the value function shows
the approximated necessary time steps to achieve the
task linearly. Here, adaptive slope method is also em-
ployed, in which the slope of the value function along
time axis is changed adaptively by the maximum time
steps for achieving the given task. The slope corre-
sponds to the discount factor in TD based learning.
The ideal slope �Videal is calculated as

�Videal = Vamp=Nmax (1)

where Vamp : ideal amplitude of the value function,
here 0.4-(-0.4)=0.8, and for adaptability Nmax is cal-
culated as

Nmax(t) =

�
N (t) if N (t) > �Nmax(t � 1)
�Nmax(t� 1) otherwise

(2)
where N[i] : necessary time at the i-th trial, � : a
attenuation factor (0:0 < � < 1:0). Here the value
range of the neuron output is from -0.5 to 0.5. Then by
comparing the change of the actual value to this ideal
one, the value at previous time V (t� 1) is trained by
the training signal as

Vs(t� 1) = V (t� 1)� �(�Videal ��V (t)) (3)

where Vs : training signal for the value function,
�V (t) = V (t)� V (t� 1), and � : a training constant.
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Figure 3: The inputs and outputs of the neural network
in this simulation. The 4th and 5th outputs are utilized
in 5.2 to examine the hidden layer representation.

By this learning, value function curve along time be-
comes smooth and the slope of the curve becomes con-
stant. When the system arrives at the target state, the
value is trained to be 0.4.

The system generates its motions according to the
sum of the motion signals m, and random numbers
rnd as trial and error factors. The motion signals m
are trained by the training signals as

ms =m + �rnd�V (4)

where � : a training constant. By this learning, motion
is trained to make more change of the value function.
This learning is processed in parallel with the value
function learning.

5 SIMULATION

5.1 Reaching

Fig. 3 shows the neural network utilized for this sim-
ulation. Note that the two of the outputs of the neu-
ral network in the right is utilized in the simulation
in the next subsection. The neural network receives
the continuous visual sensory signals, the continuous
joint angles of the arm, and the existence of the obsta-
cle, that is binary, as inputs. The number of hidden
layer is one, and the number of the hidden units is 40.
The number of motion outputs is two. The �rst one
decides the angular velocity of the joint 1, and the sec-
ond one decides that of the joint 2. Each velocity is
decided by adding the small random number (uniform
random number powered by 3) to the corresponding
output and then 0.1 is multiplied. The amplitude of
the random number is adjusted according to the rel-
ative value function gain as �V=�Videal. The value
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Figure 4: Two examples of the hand motion after learn-
ing for the di�erent target location.

range of the output of the neural network is from -0.5
to 0.5, but the training signal calculated in Eq. 3 and 4
is limited from -0.4 to 0.4 for the appropriate learning
of the neural network. So the maximum joint angular
velocity except for the random factor is 0.04, and the
minimum time steps to rotate �=2 is 32. If the robot
cannot reach its arm to the target in some time steps,
the target is moved gradually to the hand in some fol-
lowing trials. When each joint angle becomes less than
0.0 or larger than �, the joint is �xed at the angle 0.0
or � and small penalty 0.1 is given. If the robot selects
the motion for its hand to crash the obstacle, the hand
does not move and the small penalty 0.1 is also given.

Fig. 4 shows two examples of the hand loci for
di�erent target locations after 400000 trials of learn-
ing. It can be seen that the robot moves its arm while
avoiding the obstacle, and �nally it reaches its hand
to the target successfully. It looks that the robot can
distinguish its hand and the target. When the hand
was not projected on the visual sensor in the initial
state and then the hand appeared in the visual �eld,
the arm motion was still smooth.

Fig. 5 show the value function, hand motion vec-
tor as a function of the hand location, and the loci
of the hand after learning for the cases of the pre-
vious examples. It is known that when the obstacle
existed, the value function changed especially around
the right top corner of the obstacle. The right neigh-
bor of the Fig. 5(b) shows the minimum time steps
for the hand to reach the target for the case 2. It can
be seen that the value function is similar to the min-
imum time step landscape and the value function ap-
proximates the necessary time through reinforcement
learning. However, when the obstacle did not exist and
the hand goes close to the obstacle location, the hand
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Figure 5: The value function and the hand velocity.

had a tendency to avoid the illusional obstacle, but the
loci is di�erent from those when the obstacle existed.
Furthermore, when the hand located initially at the
edge of the initial location range, the hand sometimes
crashes the obstacle or goes over its joint angle limit,
but by the random factor, the hand can escape in a
small numbers of time steps in almost all the cases.
That is because the hand rarely went through such
states, and the learning was not enough. But it is ratio-
nal that the robot utilizes its limited resources mainly
for the well-experienced states. When TD based rein-
forcement learning is applied, the gap of the contour
line becomes small when the hand is close to the target
and becomes large when far from the target.

5.2 Examination of the Representation in

Hidden Layer

Here the representation in the hidden layer is exam-
ined. The main interest about the representation is
whether the representation of the target location in
the hidden layer is independent to the hand and ob-
stacle information. In this simulation, the neural net-
work which has been already trained by reinforcement
learning as the above is used, but the di�erent output
units are trained by supervised learning as shown in
Fig. 3. The connection weights from the hidden layer
to the output units are all 0.0 initially. This means
that only the input-hidden connection weights trained



by the reinforcement learning is used. The target is
located sequentially at the four corners of the visual
sensor, while the hand location is chosen randomly in
the range where the whole hand image is projected on
the visual sensor as long as the hand does not overlap
with the target. The training signals are the normal-
ized x, y factors of the target location on the work (vi-
sual sensory) space or �1, �2 on the joint space. After
the learning, the relation between the two-dimensional
target location and the two outputs is observed. The
result is compared with the case that the reinforcement
learning was not applied beforehand.

Fig. 6 shows the relation between �2 and the output
2 for the case of joint space coordinates, and the rela-
tion between x and the output 1 for the case of work
space coordinates. In these graphs, the output as a
function of the target location is plotted for 100 target
and hand location sets chosen randomly. The relation
between the output and the target location without
applying the reinforcement learning is closer to one-to-
one correspondence than after the reinforcement learn-
ing. That was perfectly di�erent from our expectation.
At the early stage of the learning, the relation when the
reinforcement learning was applied is far closer to one-
to-one correspondence than the case of no reinforce-
ment learning. That was as we had expected. In the
supervised learning, the target was not located around
the center of the visual �eld, and the excited input sig-
nals are perfectly di�erent from those when the target
is located at each corner. Therefore, the output is ran-
domly varied when the object is located around the
center. However, through the supervised learning, the
outputs become to represent the target location. The
reason may be as follows. The hand location is var-
ied randomly in the learning and the inuence of only
the hand location has to be removed from the visual
sensory signals. So the whole visual sensory signals
are utilized and integrated to exclude the inuence of
only the hand location. The smooth representation
of the hand location results in the smooth representa-
tion of the target location because the hand and tar-
get cannot be distinguished in the visual sensor. On
the other hand, when the reinforcement learning was
applied beforehand, only the target location informa-
tion could not be extracted. That may be because the
representation, in which both the hand location infor-
mation and target location information are mixed, was
acquired by the preceding reinforcement learning.

Next, the representation of the hand location is ex-
amined. Two outputs are trained by the supervised
learning. The training signals are the normalized x

and y factors of the hand location on the work (visual
sensory) space. Here it is supposed that the target or
obstacle does not appear in the visual �eld, and the
hand is located randomly. Fig. 7 shows the two out-
puts when the hand location is varied for the following
four cases to see the inuence of applying reinforce-
ment learning. In the �rst case, the full inputs are
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Figure 6: The comparison of the supervised learning
result between after reinforcement learning and no re-
inforcement learning about the hidden representation
of the target location.

given, and in the second case, the object location on
the visual sensor is �xed at the center and only the
joint angles are varied. In the third case, the object
location is varied on the visual sensor but the joint
angles are �xed as the hand is located at the center
of the visual �eld. In these three cases, the hand lo-
cation range is limited within the visual �eld, but in
the fourth case, the range is wider out of the visual
�eld. As well as the previous simulation, two cases are
compared. It can be seen that the joint angle inputs
mainly represent the x factor, while the visual inputs
mainly represent the y factor when no reinforcement
learning was applied beforehand. On the other hand,
the joint angle inputs becomes to represent the both
factors more, and the representation of the visual sig-
nals is di�cult to be interpreted after reinforcement
learning. According to the result of wide hand location
range, it is easily known that the inuence of visual sig-
nals becomes large after reinforcement learning. This
shows that the hidden representation is mixed informa-
tion of joint angles and visual signals. When another
simulation is done with the di�erent initial connection
weight values, the above tendency is still valid. From
these results, it is known that the representation on
the hidden layer changes adaptively according to the
given task through the reinforcement learning.

6 CONCLUSION

The hand-reaching task was achieved by the combina-
tion of reinforcement learning and neural network. The
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Figure 7: The comparison of the supervised learning result to see the contribution change of the joint angles and
visual signals to the hand location representation on the hidden layer through reinforcement learning.

inputs are raw visual signals, two joint angles, and the
binary value indicating the existence of the obstacle.
The target, hand, and obstacle could not be distin-
guished on the vision. The hand loci after learning
was smooth at the boundary whether the hand could
be caught on the visual sensor or not. By the analysis
of the hidden neurons' representation after the rein-
forcement learning by applying an additional super-
vised learning, the following was known. The hidden
neurons did not represent the target location either on
the work space coordinates or on the joint space coor-
dinates. The hand location is represented by mixing
the visual sensory signals and joint angles on the hid-
den layer. Such complicated representation is acquired
through the reinforcement learning. Our future work is
to introduce the dynamics of the arm at �rst. Next is
to investigate the physiological results about the cod-
ing of the postcentral somatosensory cortex where the
somatosensory and visual information are integrated,
and then to suppose the mechanism for the acquisition
of the hand-eye coordination in our living creatures.
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