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Summary
An unsupervised learning method of an evaluation function is proposed.   By this function, a robot can learn a series
of motion to achieve a given purpose.   The evaluation function is calculated by a neural network and time derivative
of this function is reduced during motions with random trials.   We confirmed by simulation that a robot with
asymmetric motion feature could obtain an appropriate asymmetric evaluation function and become to achieve a
given purpose along an almost optimal path.

1. Introduction
In famous Skinner's experiment, a mouse in Skinner's box
becomes to be able to push the button to get a piece of food after
some trials as shown in Fig. 1[1].   However, the mouse could not
know that it could get a piece of food by pushing the button before
the mouse was put into the box.   At early stage, the mouse moves
randomly, and when it pushes the button unexpectedly, it gets a
piece of food.   From the experience, the possibility that the mouse
pushes the button, slightly becomes large.   Then after many
experiences, the mouse has an intention to push the button.   This
means that the mouse in Skinner's experiment did not know only
the way to push the button, but also were not given any evaluation
functions about getting the food.   From this fact, a robot also can
obtain an evaluation function through its experiences.   Then we
assumed a locomotive robot as shown in Fig. 2.   The robot has
only a purpose to get a target.

The mouse in Skinner's experiment, can learn the
evaluation function and motion by the interaction between the
mouse and the environment without any supervisors.   When we
make a robot learn an appropriate series of motion using the
interaction, we usually give the robot an evaluation function that
we made[2][3].   The evaluation value of the present state is
calculated from the sensor signals through the evaluation function.
If the robot continues to move towards the gradient direction of
the evaluation function, it will be able to achieve the given
purpose.   For example, in the case of the robot in Fig. 2, an
evaluation function can be the inverse of the distance between the
robot and the target.   As shown in Fig. 3, the robot moves and
gets sensor signals.    Then the evaluation function makes the
supervisor signal for the motion creator from the sensor signals.
The motion creator, that is made by a layered type neural network,
learns by the supervisor signal, and become to create an
appropriate motion signal.

Then we tried to make a robot learn both an evaluation
function and a series of motion to achieve a given purpose.   We
cannot know if the evaluation function, that we give to a robot, is
the best for the robot and the environment.   Furthermore, if the
environment changes, the evaluation function also has to change.
For these reasons, the robot has to learn its evaluation function for
a good adaptation to the environment.

In this paper, we describe the way to learn the evaluation
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function without any supervisors, and the way to learn the evaluation function and the motion in parallel.   Finally
we show the result for comparing which series of motion was closer to the optimal route when the robot was given a
fixed evaluation function or when the robot learned the evaluation function by itself.

2. Learning Method of a Series of Motion
Some ways to learn a series of motion from an evaluation
function has been already proposed[2][3].   We indicate the
way that we employed.   Here, the motion signal is calculated
by a layered type neural network.   Let us suppose the 3
dimensions of space as shown Fig. 4.   X, Y axes show
sensor signals respectively.   The other axis shows the
evaluation value.   An evaluation value is decided for each
set of sensor signals and the surface in this figure is an
evaluation function surface.    The robot moves according to
the sum of the output of a neural network and a small
uniform random number as follows,

M = m + r (1)

where M : actual motion vector, m : motion signal vector and
r : uniform random number vector.      If the robot has two or more actuator, the neural network has two or more
output neurons and each output is added by a different random number.   The circle filled with oblique line in Fig. 4
shows the movable range of the robot by the random vector r.   The robot moves and can get a new evaluation value
using the evaluation function.   Then the robot makes the following supervisor signal,

ms = m + r �� (2)

where ms : supervisor signal vector for motion signal, � (t) : evaluation function and �� = � (t) - �(t-1) .   The neural
network learns at every time unit by this supervisor signal, using a conventional supervised learning algorithm like
Back Propagation Method[4].   By the learning through many experiences, the direction of the robot motion vector
becomes close to the gradient direction of the evaluation function in average as ms in Fig. 4.   Then the robot can
learn a series of motion close to the optimal route under the evaluation function.

3. Unsupervised Learning Method of an Evaluation Function
Let us think how should the evaluation function be made.   Supposing the 3 dimensions of space in which there is a
robot and a target as shown in Fig. 5 (a), we can think of an evaluation method using the distance between the robot
and the target.   However, how to normalize on each axis cannot be known easily.   Furthermore if there is an area
that the robot cannot move through, like an obstacle as shown in Fig. 5 (a), it is meaningless to evaluate only by the
distance.   Then we propose to evaluate by necessary time for
arriving at the target.   If there is an obstacle, the robot can move
beside the area and arrive at the target.   If we project the route on
the time axis as shown in Fig. 5 (b), we can evaluate under only
one criterion and there are no necessity to normalize each axis any
longer.

However, if the robot modifies the evaluation function by
tracing back the route to the starting point when the robot arrives
at the target, the robot must remember all the states it has existed.
In order to avoid wasting memory, we propose a real-time
learning method of the evaluation function.   The evaluation
function should be as follows.   As shown in Fig. 6, the output of
the function is small in an initial state, the output becomes larger
as time goes by, and finally the output becomes the largest value
when the robot gets the target.   Here, the evaluation function is
calculated by a layered type neural network and the output
function of each neuron is sigmoid between 0.0 and 1.0.   The
learning method has three phases.   When the robot is in an initial
state, to decrease the output of the evaluation function, the
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fig.8  Network structure and learning method
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network learns by the supervisor signal as

�s (x(t)) = �( x(t)) - � (3)

where �s (x(t)) : supervisor signal for the evaluation function and � :
small constant value.   Here we employ 0.01 as �.   When the robot
arrives at the target, the network learns by the supervisor signal as

�s (x(t)) = �max (4)

where � max : the maximum value of the evaluation function
(different from the maximum of the output function).   Here we

employ 0.9 as the maximum value �max .   Since it is the best state
when the robot arrives at the target, the supervisor signal can be a
constant value.   However, since the initial state is not always the
furthest state from the purpose, we cannot set up a constant value,
and we set up a slightly small value than the actual output as the
supervisor signal.   Otherwise from the initial state to the target, in
order to increase the output smoothly, the supervisor signal is as

�s(x (t)) = �(x (t)) + � 
d2�(x (t))

dt 2
(5)

where � : a smoothing constant.   Here we employ 0.5 as the smoothing constant �.   One thing we have to take care
is that the learning is on job learning and the network learns only one iteration using conventional supervised
learning algorithm like Back Propagation Method.   The output does not become to the value of the supervisor
signal, but it becomes closer to the supervisor signal slightly.

Let us assume that a robot moves along the route (b) in Fig. 7 when the robot goes from a point A to a point
B.   It takes 11 time unit, but if it moves along the route (a) it can arrive at the point B in 8 time unit.   By the

learning of the evaluation function, it becomes smooth around the route (b).   On the other hand, d�/dt along the
route (a) is larger than that along the route (b) because the robot can arrive at the point B faster.   By the learning of
motion, the motion changes to the gradient direction of the evaluation function.   The route, that robot moves along,
becomes slightly close to the route (a).   By repeating the learning of the evaluation function and the learning of
motion, the robot becomes to move along the route (a).   We can see that the combination of the two learning
processes makes the route close to the optimal one.

4. Structure and Flow of the Learning
To realize the combination of the two learning
processes, we employ the structure as shown in Fig.
8.   The large rectangle shows the robot brain and
there are two neural networks.   One of them is to
calculate the evaluation function and the other is to
calculate the motion signal.   Each of them
calculates the output from the sensor signals, and so
we can use only one neural network for both
purposes.   The robot moves according to the sum
of the output of the motion network and a random
number.   The supervisor signal for the evaluation
neural network is usually made from the second
order deviation of the output of itself as Eq.(5).
The supervisor signal for the motion network is
made from the product of the first order deviation
of the evaluation output and the random number
that was used for creating a motion.   Then the each
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network learns only one iteration by the supervisor signal respectively at
every time unit.   Fig. 9 shows the flow of the learning.   First the robot is
placed somewhere, and the evaluation network learns by the supervisor
signal as Eq.(3).   Then the robot repeats a motion as Eq.(1) and learning
of both neural networks by the supervisor signals as Eq.(2) and Eq.(5)
respectively until it arrives at the target.   When it arrives, the estimation
network learns by the supervisor signal as Eq.(4).   Then the process is
repeated many times.

5. Simulation
In this section, we show the simulation result.   We assumed the

environment as shown in Fig. 10.   The locomotive robot has two wheels
and can move them independently.   The rotate angle of each wheel is
decided by the sum of each output of the motion network and a random
number.   In order to make the environment in which we can make the
evaluation function easily, the ratio of the rotation angle against the
motion signal is three times larger in the right wheel than in the left
wheel.   The range of rotating angle of the right wheel is also three times
wider that of the left wheel as shown in Fig. 11.   The robot also has two
sensors.   One of them sensed the lateral distance from the robot to the
target and the other one sensed the forward distance.   Initially a target
was placed randomly at the edge of the rectangle except for the edge that
the robot existed.   It is drawn by a thick line in Fig. 10.   The robot
moved and if the target went backward passing under the robot, we
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assumed that the robot could catch the target.   If the target went backward passing beside the robot, we assumed that
the robot failed to catch the target.   In this simulation, when the robot failed to catch the target, the evaluation neural
network learned by the supervisor signal 0.1.   We defined one experience from placing the target on the initial
position to the success or failure to catch the target.   However, the robot can move only randomly at first phase and
cannot arrive at the target in a finite time.   Then we moved the target close to the robot when the robot could not
arrive after some time.   In order to compare, we do another simulation.   We gave the robot an evaluation function
that we can think of easily, and make the robot learn only the motion signal.

Then we show the change of the evaluation function in Fig. 12.   Each graph in Fig. 12 is drawn on robot
centered coordinates.   The robot was placed at the center of the coordinates and corresponding evaluation value was
plotted on Z axis when the target was placed on each lattice.   The contour of the evaluation function is also drawn.
Figure 12 (d) shows the evaluation function that we gave the robot in the comparison simulation.   Figure 13 shows
the contour of the evaluation function and the motion between the robot and the target when the target was placed on
each of 5 places.   They are also drawn on the robot centered coordinates but on the 2 dimensional surface.   Though
the robot moved and target did not move actually, the robot was fixed and the target moved in these figures because
of the robot centered coordinates.   On the locus of the target, the points were plotted at every 10 time unit.   In these
graphs except for the graph (a), the target moved more when the target was far from the robot and moved to the
tangential direction.   The reason is that when the robot rotates actually, the target relatively moves according to the
product of the rotation angle and the distance on the robot centered coordinates.   We also show the loci on the
absolute coordinates in Fig. 14.   Figure 14(a) shows the comparison between the locus after 5000 experiences and
that after 30000 experiences.   Figure 14(b) shows the comparison to the case of the fixed evaluation function after
30000 experiences.   On the locus of the robot, the points are also plotted at every 10 time unit.   After 1000
experiences, the evaluation function did not have an enough expansion of value range and the robot could not get the
target as shown in Fig. 13(a).
After 5000 experiences, the
evaluation function had a sharp
shape and the robot could arrive at
the target from any initial
positions.   The robot got the target
at the right half of the robot.   The
reason is that the right wheel could
rotate 3 times more than left wheel
and the robot could get the target
soon when the target was in the
right.   After 30000 experiences,
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fig. 15  Change of the necessary time to get the target

ridge of the evaluation function moved to the left and
the target moved along the ridge.   It means that the
robot approached the target with looking at it in the left.
In the absolute coordinates as shown in Fig. 14(a), the
locus of the robot became like an arc after 30000
experiences.   Furthermore, the robot went back with
rotating itself to the right when the target was seen in
the right direction.   So, the locus after 5000 experiences
seems better than that after 30000 experiences at a
glance.   However, the necessary time was more after
5000 experiences.   The evaluation function and the
locus could be reflected the characteristic of the robot.
On the other hand, the evaluation function in a
comparison simulation is symmetric shape as shown in
Fig. 12(d), and the locus of the target expanded in front
of the robot as shown in Fig. 13(d).   When we see the
Fig. 14(b), the locus in the case of fixed evaluation
function is close to a straight line and it seems better
than that in the case of self-organized evaluation
function at a glance.   Also in this case, the robot could
arrive at the target faster in the case of self-organized
evaluation function.   Then we show the change of the
necessary time for the robot to arrive at the target in Fig.
15.   The time is the average of the 12 trials in which the
target was placed at a regular interval on the edge of the
rectangle.   If the robot failed in a trial, the time is set
1000.   In this figure, we show the results of 4
simulations.   We did two simulations in which the
initial weight value in the neural network was different
from each other in the case of the fixed evaluation
function and in the case of the self-organized evaluation
function respectively.   We can see that the robot, using
the fixed evaluation function, could become to get the
target faster than in the case of the self-organized
evaluation function in an early stage.   The reason is that
it took some time to form the evaluation function in the
case of the self-organized evaluation function.   We can
also see from the Fig. 15 that after many experiences the
evaluation function and the route of the robot were
optimized in the case of the self-organized evaluation
function and realized the better route than in the case of
the fixed evaluation function.

6. Conclusion
We have proposed an unsupervised learning method by
which a machine forms an appropriate evaluation
function and a series of motion through its experiences.
We confirmed in a simulation that the evaluation
function obtained by the learning method was reflected
the characteristic of the environment.   Then the robot became to be able to move along with the optimal route.
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